ARTICLE TYPE

Homogenous Mixing of Ionic Liquids: Molecular Dynamics Simulations

Rajdeep Singh Payal and Sundaram Balasubramanian,*

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

Supporting Information

Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India E-mail: bala@jncasr.ac.in

Fig. S1 Schematic of cation.

Journal Name, 2010, [vol], 1–23 | 2

Fig. S2 Radial distribution function between (a) Cation - Cl, (b) Cation - PF_6 in the $[C_4mim][PF_6]$ - $[C_4mim][Cl]$ system displayed over a larger distance than what is shown in the main manuscript.

Fig. S3 Radial distribution function between (a) Cation - PF_6 , (b) Cation - BF_4 in the $[C_4mim][PF_6]-[C_4mim][BF_4]$ system displayed over a larger distance than what is shown in the main manuscript.

Fig. S4 Radial distribution function between (a) H2-F (BF₄) and (b) H2-F (PF₆) in the $[C_4 mim][PF_6]-[C_4 mim][BF_4]$ system.

Fig. S5 Spatial density maps of anion around cation in the three neat ionic liquids (a) PF_6 , (b) Cl and (c) BF_4 . Isosurfaces: PF_6 : Blue, Cl: Yellow, BF_4 : Red. Atoms: C in Green, N in Blue, H in Purple). The isosurfaces are at a density of 0.0184 Å⁻³ for all the systems.

Fig. S6 Spatial density maps of anion around cation in the $[C_4mim][PF_6]$ - $[C_4mim][Cl]$ system (a) PF_6 :Cl :: 10:90, b) PF_6 :Cl :: 50:50 and c) PF_6 :Cl :: 90:10. Isosurfaces and atom colour codes are the same as in Figure S2. Isosurfaces are at a density of (a) 0.00184 Å⁻³ for PF_6 and 0.01656 Å⁻³ for Cl, (b) 0.092 Å⁻³ for both PF_6 and Cl and (c) 0.01656 Å⁻³ for PF_6 and 0.00184 Å⁻³ for Cl.

Fig. S7 Spatial density maps of anion around cation in the $[C_4mim][PF_6]$ - $[C_4mim][BF_4]$ system (a) $PF_6:BF_4$:: 10:90, (b) $PF_6:BF_4$:: 50:50 and (c) $PF_6:BF_4$:: 90:10. Isosurfaces and atom colour codes are same as in Figure S2. Isosurfaces have density of (a) 0.00184 Å⁻³ for PF_6 and 0.01656 Å⁻³ for BF_4 , (b) 0.092 Å⁻³ for both PF_6 and BF_4 and (c) 0.01656 Å⁻³ for PF_6 and 0.00184 Å⁻³ for BF_4 .

Fig. S8 Partial structure factor between the terminal carbon atoms in the alkyl group of cations (tail-tail) for (a) $[C_4 mim][PF_6]-[C_4 mim][Cl]$ and (b) $[C_4 mim][PF_6]-[C_4 mim][BF_4]$ systems.

Fig. S9 Normalized first shell coordination number as a function of mole fraction for (a) H2-F (BF₄) and (b) H2-F (PF₆) in the $[C_4mim][PF_6]-[C_4mim][BF_4]$ system. The black line with circles is the normalized coordination number while the red curve with squares is the ratio of this quantity to the mole fraction of the anion.

Figure S10 represents the mapping scheme between all-atom (AA) and coarse grained (CG) beads. The bead-bead interaction parameters were chosen from the coarse grained model developed by us earlier¹ for $[C_4 \text{mim}][PF_6]$. Correspondingly, the charge of Cl was also scaled to 0.8. Non-bonded interactions of the

[C4mm][PF6]. Correspondingly, the charge of CI was also scaled to 0.8. Non-bolded interactions of the 9-6 type Lennard- Jones type were determined so that cation-anion pair correlation functions in neat [C4mim][Cl] obtained from the CG simulations reproduced those from the AA run, as well as the system density. The pair correlations between pairs of different bead types obtained from AA and CG MD simulations are displayed in Figure S11. These validate the interaction parameters for the CG model adopted here. A real space cutoff of 15 Å was applied for both LJ and Coulombic interactions. Table S1 displays the parameters employed in our CG simulations for [C4mim][Cl]. Lorentz-Berthelot mixing rules were employed for cross interactions. Spatial density maps were created using software package VMD.²

Bead pair	ϵ (kcal mol ⁻¹)	σ(Å)
I1 - I1	0.3757152	4.100
I1 - I2	0.3604245	4.050
I1 - I3	0.2739623	4.050
I1 - CM	0.3914031	4.340
I1 - C1	0.0457049	4.570
I2 - I2	0.3457295	4.100
I2 - I3	0.2628021	4.050
I2 - CM	0.3754372	4.340
I2 - Cl	0.0557049	4.720
I3 - I3	0.0997725	2.850
I3 - CM	0.2853807	3.800
I3 - Cl	0.2988648	3.810
CM - CM	0.4690000	4.585
CM - Cl	0.2651688	4.243
Cl - Cl	0.0155586	3.150

Table S1 9-6 Lennard-Jones interaction parameters for the coarse grain model of [C4mim][Cl].

Fig. S10 Schematic showing the mapping from all-atom to the coarse grained model in [C₄mim][Cl].

Journal Name, 2010, [vol], 1–23 | 16

Fig. S11 Radial distribution functions betwen (a) 11-11, (b) 12-12, (c) 13-I3, (d) 11-Cl, (e) 12-Cl, (f) I3-Cl and (g) Cl-Cl compared between that from AA and CG MD simulations for pure $[C_4mim][Cl]$.

Anion	Fraction (%)	Box length (Å)	Box length (Å)
		(AA)	(CG)
PF_6	100	64.640	200.8515
[C1]	100	59.940	186.0311
BF_4	100	62.344	_
PF_6 : [Cl]	10 - 90	60.514	188.0311
	25 - 75	61.024	189.6157
	50 - 50	62.220	193.3320
	75 - 25	63.500	197.3093
	90 - 10	64.211	199.5185
$PF_6: BF_4$	10 - 90	62.652	_
	25 - 75	63.020	_
	50 - 50	63.400	_
	75 - 25	64.195	_
	90 - 10	64.389	_

Table S2 Box length and fraction of ion pairs for ionic liquids with $[C_4mim]$ as cation. 800 and 24000 ion pairs were used in the all-atom (AA) and coarse grained (CG) MD simulations respectively.

Journal Name, 2010, [vol], 1–23 | 20

Fig. S12 Radial distribution functions at various concentrations of anions in the $[C_4 mim][PF_6]-[C_4 mim][Cl]$ system between (a) I1-I1, (b) I2-I2, (c) I3-I3, (d) I1-Cl and (e) I1-PF₆, compared between AA and CG MD simulations.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

References

- 1 B. L. Bhargava, R. Devane, M. L. Klein and S. Balasubramanian, Soft Matter, 2007, 3, 1395–1400.
- 2 W. Humphrey, A. Dalke and K. Schulten, *Journal of Molecular Graphics*, 1996, **14**, 33–38.