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θmax
i /2π

Residue name Three letter code αβ βγ γδ

Alanine ALA 1.0 - -

Arginine ARG 0.2 0.3 0.5

Asparagine ASN 0.5 1.0 -

Aspartic acid ASP 0.5 1.0 -

Cysteine CYS 1.0 - -

Glutamic acid GLU 0.3 0.5 1.0

Glutamine GLN 0.3 0.5 1.0

Glycine GLY - - -

Histidine HIS 0.3 0.5 -

Isoleucine ILE 0.5 1.0 -

Leucine LEU 0.5 1.0 -

Lysine LYS 0.2 0.3 0.5

Methionine MET 0.5 0.6 -

Phenylalanine PHE 0.3 0.5 -

Proline PRO - - -

Serine SER 1.0 - -

Threonine THR 1.0 - -

Tryptophan TRP 0.3 0.4 -

Tyrosine TYR 0.3 0.5 -

Valine VAL 1.0 - -

Table S1: The maximum rotation amplitudes θmax
i for the amino acid side chain groups

used in the current work. αβ, βγ and γδ refer to rotation about the Cα-Cβ, Cβ-Cγ and Cγ-Cδ

bonds respectively.
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PDB ID Cα-RMSD from 2INE (Å) Note

All in 16 Å from ligand

2INE 0.000 0.000 Complexed with Phenylacetic Acid, RMSD reference

2IQ0 0.094 0.085 Complexed with Hexanoic Acid

2IS7 0.137 0.145 Complexed with Dichlorophenylacetic Acid

2INZ 0.155 0.134 Complexed with 2-Hydroxyphenylacetic Acid

1AH0 0.497 0.248 Pig aldose redectase complexed with Sorbinil

1EL3 0.301 0.156 Complexed with IDD384 inhibitor

1EKO 0.474 0.290 Pig aldose reductase complexed with IDD384 inhibitor

1IEI 0.723 0.609 Complexed with Zenarestat

1MAR 0.482 0.495 Complexed with Zopolrestat

Table S2: Cα - RMSD between 2INE which we used as “St-1” and 8 aldose reductase crystal

structures with different ligands bound. Cα-RMSD for each pair is calculated for the whole

system and the residues within 16 Å of the ligand, respectively.
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Figure S1: Average calculation time for diagonalisation of the Hessian matrix. κ = 120,

1299, 3246, corresponding to complexes with R = 6, 10, 14, and κ = 15387 (without any

rigidification) are plotted. The fitting line scales as κ1.5, described as blue dashed line. The

calculations were performed on a 2.6GHz Xeon X5650 machine.

S4

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013



−11460

−11470

−11480

−11490

−11500

−11510
−9970 −9960 −9950 −9940 −9930

P
ot
en
ti
al

E
ne
rg
y
in

IS
/k
ca
lm

ol
−
1

Potential Energy in V /kcalmol−1

Figure S2: The potential energies in vacuum (V) and the corresponding recomputed ener-

gies in the implicit solvent (IS) are plotted. The Pearson correlation coefficient is 0.86.
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Hessian in the local rigid body coordinates

In this section, we detail the derivations of the Hessian in the local rigid body

coordinates. Our starting point is the first derivatives of the potential energy. For the

translational degrees of freedom, rI , this is given by
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∂rIα
=
∑

i∈I

3∑

a=1

∂V

∂rIa(i)

∂rIa(i)

∂rIα
=
∑

i∈I

∂V

∂rIα(i)
. (1)

Additionally, the first derivative of the potential energy with respect to the rotational

degrees of freedom, pI , gives
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We have employed the following relations in the above partial derivatives

ri = rI + SIxI(i); i ∈ I, (3)
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The second derivatives then follow in a similar manner. There are four separate cases

to consider, and we derive them below for each case
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