Electronic Supplementary Information

Thiocyanate-Free Cyclometalated Ruthenium(II) Sensitizers for DSSC: A Combined Experimental and Theoretical Investigation

Ramesh Kumar Chitumalla,^a Kankatala S.V. Gupta,^a Chandrasekhram Malapaka,^a Reza Fallahpour,^c Ashraful Islam,^b Liyuan Han,^b Bhanuprakash Kotamarthi^{*a} and Surya Prakash Singh^{*a}

^aInorganic and Physical Chemistry Division

CSIR-Indian Institute of Chemical Technology, Hyderabad-500607, India

^bPhotovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

^cInstitute of Organic Chemistry, University of Zurich UZH, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Scheme S1: Optimized Geometrical parameters of the dyes M1-M4.

Table S1: Selected FMOs, their Energies (eV) and MO composition (%) of the dye M1.

Table S2: Selected FMOs, their Energies (eV) and MO composition (%) of the dye M2.

Table S3: Selected FMOs, their Energies (eV) and MO composition (%) of the dye M4.

Table S4: TD-DFT data of **M1**@(TiO₂)₃₈ with 1-COOH and 2-COOH adsorption.

Table S5: TD-DFT data of M2@(TiO₂)₃₈ with 1-COOH and 2-COOH adsorption.

Table S6: TD-DFT data of $M4@(TiO_2)_{38}$ with 1-COOH and 2-COOH adsorption.

Table S7: Photoelectron Spectrum of the dyes M1-M4@TiO₂

E-Mail: Corresponding authors: spsingh@iict.res.in, bhanu2505@yahoo.co.in

Scheme S1: Optimized Geometrical parameters of the dyes M1-M4.

	FMO	MO Composition (%)
L+2	-2.09	TPY (97.5)
L+1	-2.43	Ru (5.0) TPY (94.0)
L	-2.73	Ru (12.5) TPY (81.9) TPY-C (5.6)
н	-5.24	Ru (49.8) TPY (14.5) TPY-C (35.7)
H-1	-5.55	Ru (60.6) TPY (22.3) TPY-C (17.0)
H-2	-5.63	Ru (66.7) TPY (13.4) TPY-C (19.8)

Table S1: Selected FMOs (Isosurface=0.02), their Energies (eV) and Molecular orbital composition (%) of the dye **M1**.

	FMO	MO Composition (%)
L+2	-2.09	TPY (97.4)
L+1	-2.42	Ru (5.1) TPY (93.9)
L	-2.73	Ru (12.5) TPY (81.8) TPY-C (5.6)
н	-5.15	Ru (45.9) TPY (13.7) TPY-C (40.4)
H-1	-5.54	Ru (60.3) TPY (22.0) TPY-C (17.7)
H-2	-5.62	Ru (65.9) TPY (13.8) TPY-C (20.2)

Table S2: Selected FMOs (Isosurface=0.02) and their Energies (eV). Molecular orbital composition (%) of the dye **M2**.

	FMO	MO Composition (%)
L+2	-2.12	TPY (97.6)
L+1	-2.46	Ru (5.2) TPY (93.9)
L	-2.78	Ru (11.7) TPY (82.8) TPY-C (5.5)
Н	-5.42	Ru (51.1) TPY (13.8) TPY-C (35.1)
H-1	-5.65	Ru (61.1) TPY (21.1) TPY-C (17.8)
H-2	-5.73	Ru (68.9) TPY (13.6) TPY-C (17.4)

Table S3: Selected FMOs (Isosurface=0.02) and their Energies (eV). Molecular orbital composition (%) of the dye **M4**.

Dye Adsorbed	State	Wavelength (nm)	Excitation Energy	Oscillator Strength	Dominant contribution
with			(eV)	-	
2-СООН	S7	653	1.90	0.0303	H-2→L+7 (15%), H-2→L+8 (12%) & H-2→L+9 (12%)
	S13	593	2.09	0.0122	H-1→L+7 (19%), H-1→L+8 (12%) &H-1→L+9 (11%)
	S21	560	2.21	0.1341	H-1→L+21 (10%) &H-1→L+28 (10%),
	S47	509	2.44	0.0105	H-1→L+10 (28%), H-2→L+7 (27%), H-1→L+9 (10%) &H-1→L+11 (10%)
1-COOH	S6	647	1.92	0.0217	H-2→L+11(36%) &H-2→L+17(16%)
	S18	567	2.19	0.0675	H-1→L+11(25%), H-1→L+17(12%) &H-2→L+32(10%)
	S32	522	2.38	0.0301	H-2→L+5(34%), H-1→L+7(14%), H-1→L+32(13%) &H-1→L+31(10%)
	S34	519	2.39	0.0230	H-1→L+7(37%), H-2→L+6 (14%) &H-2→L+5 (13%)

Table S4: TD-DFT data of $M1@(TiO_2)_{38}$ with 1-COOH and 2-COOH adsorption.

Dye Adsorbed with	State	Wavelength (nm)	Excitation Energy (eV)	Oscillator Strength	Dominant contribution
2-COOH	S9	659	1.88	0.0305	H-2→L+7 (18%), H-2→L+9 (14%) &H-2→L+8 (12%)
	S16	599	2.07	0.0164	H-1→L+7 (20%), H-1→L+9 (12%) &H-1→L+8 (11%)
	S26	566	2.19	0.1313	H-1→L+29 (15%) &H-1→L+21 (10%)
1-COOH	S3	641	1.94	0.0166	H-2→L+10(19%), H-2→L+14(12%) &H-2→L+16(12%)
	S15	562	2.21	0.0497	H-1→L+1(52%)
	S16	560	2.22	0.0432	H-1→L+1 (46%)
	S35	517	2.40	0.0151	H-1→L+8 (77%)
	S38	515	2.41	0.0162	H-1→L+9(24%), HOMO→L+18(18%) &HOMO→L+19(16%)
	S43	505	2.45	0.0166	H-1→L+9 (28%) &H-1→L+10(17%)
	Dye Adsorbed with 2-COOH	Dye Adsorbed withState2-СООНS9S16S16S26S261-СООНS3S15S15S16S16S35S35S38S38S43	Dye Adsorbed withState Wavelength (nm)2-COOHS9S16599S16599S265661-COOHS3S15562S16560S35517S38515S43505	Dye Adsorbed withStateWavelength (nm)Excitation Energy (eV)2-СООНS96591.88S1659992.07S265662.191-СООНS36411.94S155622.21S165602.22S165602.22S165602.22S165602.22S385172.40S385152.41S435052.45	Dye Adsorbed with State Wavelength (nm) Excitation Energy (eV) Oscillator Strength 2-COOH S9 1.88 0.0305 S16 599 2.07 0.0164 S26 566 2.19 0.1313 1-COOH S3 641 1.94 0.0166 S15 562 2.21 0.0497 S16 560 2.22 0.0432 S15 562 2.22 0.0432 S35 517 2.40 0.0151 S38 515 2.41 0.0162 S43 505 2.45 0.0166

Table S5: TD-DFT data of $M2@(TiO_2)_{38}$ with 1-COOH and 2-COOH adsorption.

Dye Adsorbed with	State	Wavelength (nm)	Excitation Energy (eV)	Oscillator Strength	Dominant contribution
	S3	633	1.96	0.0305	H-2→L+6 (24%),
2-COOH	S8	578	2.15	0.0210	H-1→L+6 (22%) &H-1→L+5 (10%)
	S12	548	2.26	0.1235	H-1→L+24 (19%), H-1→L+19 (13%), &H-1→L+22 (11%)
	S42	491	2.52	0.0195	H-1→L+7 (13%), H-1→L+6 (11%), H-2→L+7 (10%) &H-1→L+9 (10%)
1-COOH	S4	632	1.96	0.0223	H-2→L+10(44%) &H-1→L+10(13%)
	S14	556	2.23	0.0782	H-1→L+10(31%) &H-2→L+10(10%)
	S27	508	2.44	0.0626	H-1→L+30(25%) &H-1→L+31(22%)
	S46	475	2.61	0.0256	H-1→L+10(21%), H-1→L+15(18%), H-1→L+13(15%) &H-1→L+17(12%)

Table S6: TD-DFT data of $M4@(TiO_2)_{38}$ with 1-COOH and 2-COOH adsorption.

Table S7: Ionization potential (IP) of **M1, M2, M3** and **M4** determined by using the photoemission yield spectrometer (Riken Keiki, AC-3E).

