

Correlating Cation Ordering and Voltage Fade in a Lithium-Manganese-Rich Lithium-Ion Battery Cathode Oxide: a Joint Magnetic Susceptibility and TEM Study

Debasish Mohanty,^{a,*} Athena S. Sefat,^a Jianlin Li,^b Roberta A. Meisner,^a Adam J. Rondinone,^c E. Andrew Payzant,^d Daniel P. Abraham,^e David L. Wood III,^b and Claus Daniel^{b,f,*}

^aMaterials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37931, USA

^bEnergy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN

37831, USA ^cCenter for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN

37931, USA ^dChemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge,

T 37831, USA ^eChemical Sciences and Engineering Division, Argonne National Laboratory, Argonne,

Illinois 60439, USA ^fBredesen Center for Interdisciplinary Research and Graduate Education, University

of Tennessee, Knoxville, TN 37996, USA.

Supplementary Information

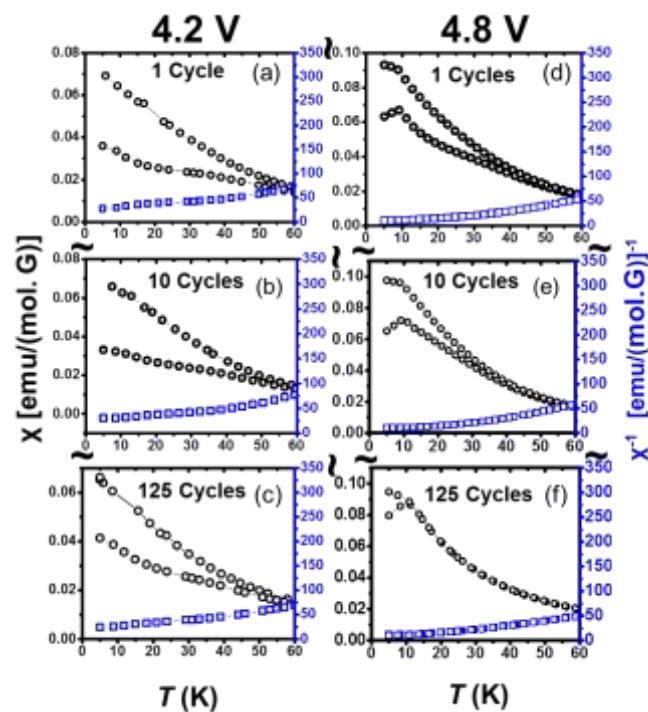


Figure S1: Temperature dependence of the molar magnetic susceptibility in the temperature region 5K-60K of cycled LMR-NMC when cycled at a cutoff voltage 4.2V (a-c) and 4.8V (d-f). During 4.2V cycling the bifurcation of FC and ZFC can be observed after 1 cycle (a), 10 cycles(b), and after 125 cycles (c). However, while cycling at 4.8V, the bifurcation of FC and ZFC suppress after subsequent 1 and 10 cycles (d-e) and vanishes after 125 cycles (f).

Table TS1: magnetic moments of Mn, Co, and Ni at different oxidation states and in low-spin (LS), and high-spin (HS) configurations

	Ni ²⁺ HS/LS	Ni ³⁺ HS	Ni ³⁺ LS	Co ³⁺ HS	Co ³⁺ LS	Co ⁴⁺ HS	Co ⁴⁺ LS	Ni ⁴⁺ HS	Ni ⁴⁺ LS	Mn ³⁺ HS	Mn ³⁺ LS	Mn ⁴⁺ HS/LS	Mn ⁵⁺ HS/LS	Mn ⁶⁺ LS	Mn ²⁺ LS	Mn ²⁺ HS
Number of unpaired electrons (n)	2	3	1	4	0	5	1	4	0	4	2	3	2	1	1	5
Spin-only magnetic moment (μ_s B.M.)	2.8	3.9	1.7	4.9	0	5.9	1.7	4.9	0	4.9	2.8	3.9	2.8	1.7	1.7	5.9

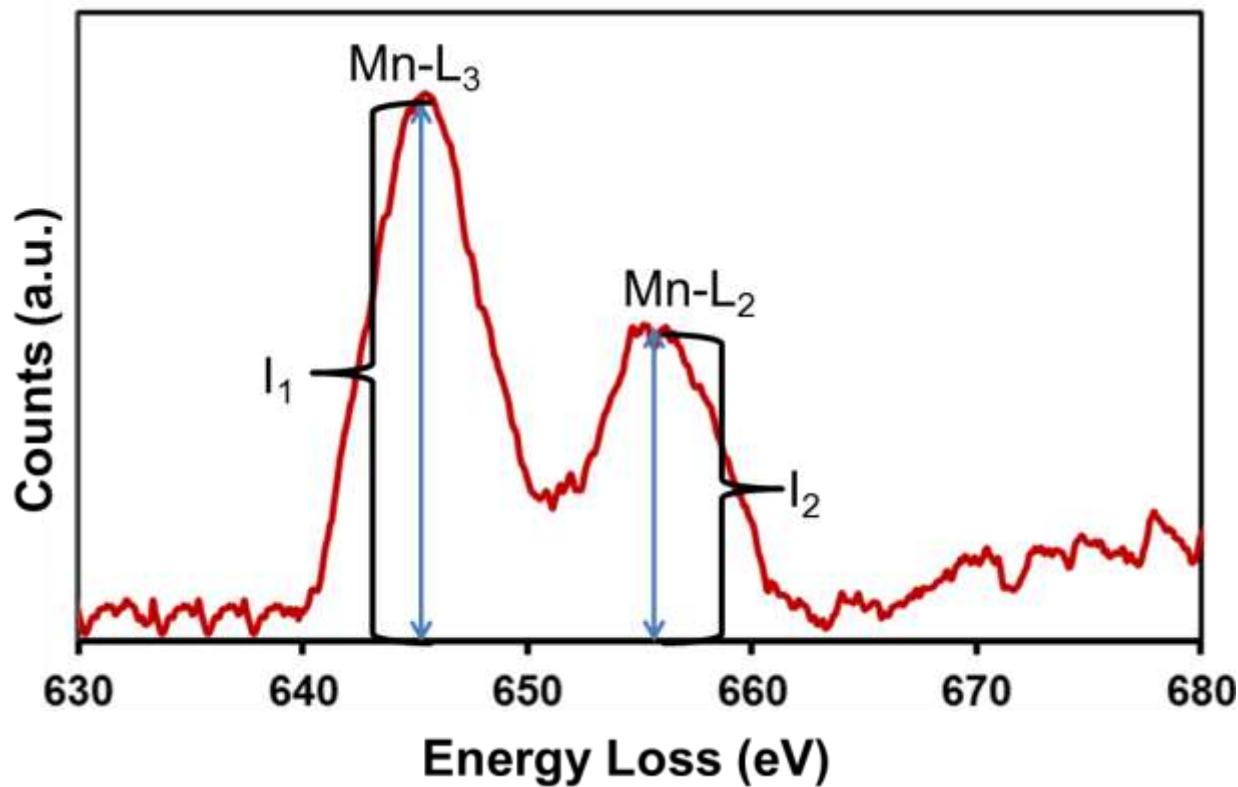


Figure S2: EELS spectra collected from the pristine LMR-NMC cathode oxide. The Mn L₃/L₂ ratio was calculated as I_1/I_2 . Where I_1 is the intensity of Mn-L₃ and I_2 is the intensity of Mn-L₂ white lines. This procedure was adopted to calculate the L₃/L₂ ratio for all the materials.