Electronic Supplementary Information (ESI)

Graphene nanopores: electronic transport properties and design methodology

Wanzhi Qiu,^{1b} Phuong Nguyen^{a2} and Efstratios Skafidas*^{ab}

SI 1. Transmission spectra of aGNPs

¹ National ICT Australia, Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia

² Centre for Neural Engineering, The University of Melbourne, 203 Bouverie Street, Carlton, Victoria 3053, Australia. E-mail: <u>sskaf@unimelb.edu.au</u>

Figure S2 Transmission spectra of aGRs with one broken pore edge created with a Na=29 aGR. The pore length Lc and width (Na-2Nc=7) are fixed by Lc=3 and Nc=11. Removing a tip atom of the zigzag edge (BEV = [L1] or BEV = [L3]) leads to "V"-shaped transmission spectra. The aGNP remains semi-conducting when only one pore edge is broken.

SI 2. Transmission spectra and LDOS

Figure S3 Transmission spectra and LDOS of perfect ribbon and aGNP in Fig. 2b with "∩"-shaped transmission (*i.e.*, with BEV=[L1, R5].) a, The transmission spectra. b, LDOS at the pore-edge atom located at L3. (See Fig.1 for pore geometries.)

Figure S4 Transmission spectra and LDOS of perfect ribbon and the aGNP in Fig. 2b
with "M"-shaped transmission (i.e., with BEV=[L1, R3, T3].) a, The transmission spectra.
b, LDOS at the pore-edge atoms located at L3. c, LDOS at the pore-edge atoms located at T6. (See Fig.1 for pore geometries.)

SI 3. Derivation of transmission spectrum of the system shown in Fig. 3a

The QW has one conduction band with dispersion relation $E=2t_0cos(ka)$, where E is the energy of electrons, t_0 the hopping coefficient in the QW, k the wave number and a the lattice spacing. To calculate the transmission of this system, we assume that the electrons are described by a plane wave incident from the far left with unit amplitude and a reflection

amplitude *r*. At the far right the wave has a transmission amplitude *t*. The probability amplitude to find the electron on site *j* of the QW in the state *k* can, therefore, be written as¹:

$$a_j = e^{ikja} + re^{-ikja}, \quad j \le 0 \tag{1}$$

$$a_j = t e^{ikja}, \quad j \ge L \tag{2}$$

where *i* is the imaginary unit. Solving the two equations obtained by setting j=0 and j=-1 respectively in (1) leads to

$$a_{-1} = -2i\sin(ka) + a_0 e^{ika} \,. \tag{3}$$

Similarly the equations of (2) on sites j=L and j=L+1 leads to

$$a_{L+1} = a_L e^{ika} \,. \tag{4}$$

By defining $\tau = -E/t_0$, the Schrödinger equations on other sites of the QW are given by

$$-\tau a_{j} = a_{j-1} + a_{j+1}, \quad j = 1, \cdots, L - 1.$$
(5)

Now consider the left QDC. The probability amplitude, b_l , to find the electron in the state l of the QDC obeys the following Schrödinger equations:

$$Eb_1 = \varepsilon_1 b_1 + V_1 b_2 + t_1 a_0, (6)$$

$$Eb_{l} = \varepsilon_{l}b_{l} + V_{1}b_{l-1} + V_{1}b_{l+1}, \quad l = 2, \cdots, N_{1} - 1,$$
(7)

$$Eb_{N_1} = \varepsilon_N b_{N_1} + V_1 b_{N_1 - 1} .$$
(8)

Iterating backwards the equation for b_{N_1} we can express b_1 in terms of a_{02}

$$b_1 = \frac{t_1 a_0}{D_1},\tag{9}$$

where

$$D_1 = Q_{N_1}(\varepsilon_1, V_1, N_1),$$
(10)

with Q_{N_1} defined by

$$Q_1(\varepsilon, V, N) = E - \varepsilon, \qquad (11)$$

$$Q_n(\varepsilon, V, N) = E - \varepsilon - \frac{V^2}{Q_{n-1}(\varepsilon, V, N)} \quad n = 2, \cdots, N.$$
(12)

Inserting (9) into the following Schrödinger equation on site j=0 of the QW:

$$Ea_0 = t_0 a_{-1} + t_0 a_1 + t_1 b_1 \tag{13}$$

leads to

$$-\tau_1 a_0 = a_{-1} + a_1, \tag{14}$$

where $\tau_1 = -(E - \frac{t_1^2}{D_1})/t_0$.

Similarly, working on the right QDC and site j=L of the QW, we have

$$-\tau_2 a_L = a_{L-1} + a_{L+1},\tag{15}$$

where
$$\tau_2 = -(E - \frac{t_1^2}{D_2})/t_0$$
 with $D_2 = Q_{N_2}(\varepsilon_2, V_2, N_2)$.

The system transmission spectrum $T(E) = |t|^2$ can then be computed by solving the set of L+3 equations (3)-(5), (14) and (15) for the transmission amplitude *t* using Cramer's rule, with the result given by

$$t=\frac{-2i\sin(ka)}{e^{ikLa}\Delta},$$

where

$$\Delta = -(\tau_1 + e^{ika})(\tau_2 + e^{ika})\Delta_{L-1} + (\tau_1 + \tau_2 + 2e^{ika})\Delta_{L-2} - \Delta_{L-3},$$

with Δ_K being the $K \times K$ determinant

$$\Delta_{K} = \begin{vmatrix} \tau & 1 & 0 & \cdots & 0 \\ 1 & \tau & 1 & \cdots & 0 \\ & \ddots & \ddots & \ddots \\ 0 & \cdots & 1 & \tau & 1 \\ 0 & \cdots & 0 & 1 & \tau \end{vmatrix}.$$

References

1. Datta, S. Quantum Transport: Atom to Transistor (Cambridge University Press,

Cambridge, 2005).