Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2014

ARTICLE TYPE

First-principles study of the lattice dynamics of Sb₂S₃

Yun Liu,^a Kun Ting Eddie Chua,^b Tze Chien Sum,^{c,d,e} and Chee Kwan Gan^{*a}

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

Supplementary Information

Fig. 1 shows the phonon dispersions of Sb₂S₃ obtained with smaller $1 \times 1 \times 1$ and $1 \times 2 \times 1$ supercells. Degeneracies are lifted along high symmetry directions. Imaginary frequencies (represented by negative frequencies) are more pronounced in the $1 \times 1 \times 1$ case.

Fig. 2 shows the phonon dispersions of Bi₂S₃ obtained using $1 \times 4 \times 1$, $2 \times 2 \times 2$ and $2 \times 4 \times 2$ supercells, as well as the vibrational density of states (vDOS). They exhibit similar features as that of Sb₂S₃ [See Section 3.3 of the main text].

Table 1 shows all Raman active phonon modes of Sb_2S_3 , calculated using the supercell force-constant method and DFPT.

Raman	Intensity	DFPT	Supercell
mode	${ m \AA}^4~{ m u}^{-1}$	(cm^{-1})	(cm^{-1})
B _{2g}	0.01	47.1	46.8
\mathbf{B}_{1g}	267	47.7	47.7
\mathbf{B}_{3g}	1320	50.8	50.8
A_g	475	54.3	54.2
\mathbf{B}_{1g}	2.0	68.8	68.8
\mathbf{B}_{3g}	1140	69.1	69.0
A_g	1160	74.5	74.2
B_{2g}	573	99.1	99.1
A_g	187	100.0	100.0
B_{2g}	228	112.4	112.1
\mathbf{B}_{2g}	9.3	124.1	125.0
A_g	1190	131.7	131.5
A_g	2680	169.6	169.5
B_{2g}	751	171.2	171.0
\mathbf{B}_{1g}	3280	186.6	186.6
A_g	9970	196.7	197.4
\mathbf{B}_{3g}	2780	198.1	198.1
\mathbf{B}_{2g}	130	199.7	199.5
\mathbf{B}_{3g}	16000	200.8	200.8
\mathbf{B}_{1g}	1590	208.2	208.2
\mathbf{B}_{1g}	8990	229.3	229.3
\mathbf{B}_{3g}	1390	231.4	231.4
A_g	4500	251.0	251.0
\mathbf{B}_{2g}	240	254.2	254.6
A_g	56500	261.7	261.6
B_{2g}	94.0	277.7	278.0
A_g	19100	277.9	278.0
B_{2g}	1980	286.6	285.9
A_g	4950	290.8	290.7
B_{2g}	5090	294.3	295.9

Table 1 All 30 Raman active phonon modes of Sb₂S₃ obtained using the supercell force-constant method and DFPT.

Fig. 1 (Color online) First-principles phonon dispersions along high symmetry directions for orthorhombic Sb₂S₃ calculated using the supercell force-constant method for $1 \times 1 \times 1$ and $1 \times 2 \times 1$ supercells. The selected **q**-points are $\Gamma = (0,0,0)$, $X = (\frac{1}{2},0,0)$, $S = (\frac{1}{2},\frac{1}{2},0)$, $R = (\frac{1}{2},\frac{1}{2},\frac{1}{2})$, $T = (0,\frac{1}{2},\frac{1}{2})$, and $Z = (0,0,\frac{1}{2})$. Blue circles are phonon frequencies calculated from DFPT at **q**-points commensurate with $2 \times 4 \times 2$ supercell, while red circles are frequencies at **q**-points non-commensurate with any of the supercells.

Fig. 2 (Color online) First-principles phonon dispersions along high symmetry directions for orthorhombic Bi₂S₃ calculated using the supercell force-constant method for $1 \times 4 \times 1$, $2 \times 2 \times 2$ and $2 \times 4 \times 2$ supercells. The selected **q**-points are $\Gamma = (0,0,0)$, $X = (\frac{1}{2},0,0)$, $S = (\frac{1}{2}, \frac{1}{2}, 0)$, $R = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, $T = (0, \frac{1}{2}, \frac{1}{2})$, and $Z = (0, 0, \frac{1}{2})$. Blue circles are phonon frequencies calculated from DFPT at **q**-points commensurate with $2 \times 4 \times 2$ supercell, while red circles are frequencies at **q**-points non-commensurate with any of the supercells. Imaginary frequencies (represented by negative frequencies) are present in $1 \times 4 \times 1$ supercell. Degeneracies are preserved in the $2 \times 2 \times 2$ and $2 \times 4 \times 2$ supercells but lost in $1 \times 4 \times 1$ supercell.

2 | Journal Name, 2010, [vol],1-2