Supporting Information

Experimental and theoretical study on the sensing mechanism of a

fluorescence probe for hypochloric acid: Se...N nonbonding

interaction modulating the twist process

Zhangrong Lou^{a,b}, Songqiu Yang^a, Peng Li^a, Panwang Zhou^a and Keli Han*^a

^aState Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, P. R. China E-mail: klhan@dicp.ac.cn Fax: +86-411-84675584; Tel: +86-411-84379293

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

Contents:

1. Synthesis and characterization of compounds2
2. The absorption and excitation spectra of NI-Se and NI-SeO
3. The fluorescence spectra of NI-Se and NI-SeO at 77K4
4. The fluorescecne quantum yields of NI-Se and NI-SeO in different
solvents5
5. The optimized geometry of NI-Se in ICT state
6. The relevant molecular orbitals of NI-SeO6
7. The measurements of wavelength in ICT and TICT state7
8. The influences of viscosity on emission spectra8
9. Additional spectroscopic data9
10. References
11. Cartesian coordinates for the optimized structures13

1. Synthesis and characterization of compounds

The general synthetic route of the compound **3** was described in Scheme S1.

Scheme S1. The synthesis of compound 3.

Synthesis of 4-aminobutyric acid ethyl ester hydrochloride (1): This compound was prepared according to the literature procedure¹. To 100 mL ethanol that processed with magnesium powder was added thionyl chloride (20 mL) at 0 °C. The solution was stirred at 0 °C for 30 min. After this period, 10 g (100 mmol) of 4-aminobutyric acid was added at 0 °C and the solution was stirred at 67 °C for 1 h. The volatiles were removed and the residue was washed with acetone, a white powder was obtained (8.70 g, 52.1%).

Synthesis of *N*-(butyric acid ethyl ester)-4-bromo-1,8-naphthalimide (2): This compound was prepared according to the literature procedure². A mixture of 4-bromo-1,8-naphthalic anhydride (2.77g, 10 mmol), 4-aminobutyric acid ethyl ester hydrochloride 1 (2.5g, 15mmol) and triethylamine (5 mL, 35 mmol) were refluxed in ethanol (30 mL) for 6 h. The reaction mixture was concentrated in vacuo to give crude compound, which was purified by column chromatography (silica gel, CH2Cl2) to give light yellow solid (3.40 g, 87.2%). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.66-8.64 (m, 1H), 8.57-8.55 (m, 1H), 8.40 (d, *J*=8.0, 1H), 8.03 (d, *J*=8.0, 1H),

7.86-7.82 (m, 1H), 4.24 (t, *J*=8.0, 2H), 4.13-4.08 (m, 2H), 2.44 (t, *J*=8.0, 2H), 2.03-2.06 (m, 2H), 1.23 (t, *J*=8.0, 3H).

The general synthetic route of the compound **5** was described in Scheme S2.

Scheme S2. The synthesis of compound 5.

Synthesis of *N*-methyl-4-bromo-1,8-naphthalimide (4): This compound was prepared according to a slight modification of the literature procedure³. 5.00 g (18 mmol) of 4-bromo-1,8-naphthalic anhydride and 50 mL of 20 % methylamine aqueous solution were stirred in ethanol (30 mL) at room temperature. After this period, the mixture was filtered, and the precipitate was washed thoroughly with water. The acquired precipitate was recrystallized with ethanol to give a white solid (5.00 g, 95.0 %).

2. The absorption and excitation spectra of NI-Se and NI-SeO

3

Figure S1. The absorption (a) and normalized excitation (b) spectra of NI-Se and NI-SeO at room temperature in water.

3. The fluorescence spectra of NI-Se and NI-SeO at 77K

Figure S2. The fluorescence spectra of NI-Se (a) and NI-SeO (b) at 298 K and 77K in water. The excitation wavelength was set to be 420 nm for NI-SeO. The result was reproduced from Ref. 5 with permission from The Royal Society of Chemistry.

4. The fluorescecne quantum yields of NI-Se and NI-SeO in different solvents

The quantum yields of NI-Se and NI-SeO in different solvents were measured with the solution of fluorescein in 0.1 M NaOH ($\phi = 0.95$) as a fluorescence standard⁴. The quantum yields of NI-Se and NI-SeO in water were taken from reference 5 (Z. Lou, P. Li, Q. Pan and K. Han, *Chem. Commun.*, 2013, **49**, 2445-2447.)

Table S1. The quantum yields of NI-Se in different solvents.

	Solvent	<i>n</i> -hexane	CH_2Cl_2	CH ₃ CN	CH ₃ CH ₂ OH	CH ₃ OH	H_2O
Qua	antum Yield	0.53	0.50	0.39	0.26	0.17	0.04
Table S2. The quantum yields of NI-SeO in different solvents.							
	Solvent	<i>n</i> -hexane	CH_2Cl_2	CH ₃ CN	CH ₃ CH ₂ OH	CH ₃ OH	H_2O
Qua	antum Yield	0.27	0.48	0.44	0.46	0.42	0.45

5. The optimized geometry of NI-Se in ICT state

Figure S3. Structures of NI-Se in ICT state were optimized with the dihedral angle C10-N2-C17-C18 fixed. Green: C; red: O; blue: N; yellow: Se; H atoms have been hidden for simplicity.

6. The relevant molecular orbitals of NI-SeO

Figure S4. The relevant frontier molecular orbitals NI-SeO.

7. The measurements of wavelength in ICT and TICT state

Figure S5. Fluorescence decays of NI-Se probed at different wavelength in water (298 K) from time-correlated single photon counting (TCSPC) data.

Figure S6. Normalized fluorescence of ICT and TICT state at different wavelength

in water (298 K). The fluorescence intensity: $f_i = F_i \times A_i$, where *f* is the fluorescence intensity of ICT or TICT state; F is the fluorescence intensity of NI-Se; A is the component of the ICT or TICT obtained from the global fitting of the fluorescence decays of NI-Se with three exponents; i represents different wavelength.

8. The influences of viscosity on emission spectra

Figure S7. The fluorescence spectra of compound **3** (a) and **5** (b) (3.0 μ M) in ethanol upon the addition of glycerin. The fluorescence intensity was measured with the excitation wavelength 435 nm, and the excitation and emission slits set to 2 and 1 nm, respectively.

9. Additional spectroscopic data

Eleme	ntal	Com	posit	ion	Repo	rt												ŀ		Page 1
Single Tolerai Isotope	Single Mass Analysis Folerance = 10.0 PPM / DBE: min = -100.0, max = 200.0 sotope cluster parameters: Separation = 1.0 Abundance = 1.0%						NI-	0												
Monoiso 40 formu	otopic I ula(e)	Mass, evalua	Odd a ted wi	ind E th 1 i	ven El results	ectro with	n Ions in limit	s ts (up	to 50) clos	est res	sults fo	or each	mas	ss)					
ZFK(CHC, 12090501 100	A) 209 (6	.966) C 451	n (Cen, .1982	4, 50.0	00, Ht); :	Sm (S	G, 2x3.	00); S	b (15,1	0.00);	Cm (20	06:209)								TOF LD+ 1.97e3
%-	4	50.200 49.1867	5 452.1	983 4 48	79.2528 0.2504	5	37 2672			501.2	004									
0 400	420	440	460	480	500	520	540	568.	1711 580	600	620	640	659.3	157 70	700	720	755	.2869	8	00.3760 m/z
Minimum Maximum	:				200.0		10.0		-100.	. 0		010	000		700	/20	/40	760	780	800
Mass	C	alc. 1	Mass		mDa		PPM		DBE		Score	3	Form	ula						
451.1982	2 4	51.20	22		-4.0		-8.8		17.5		1		C29	H27	N2	03				

10. References

- 1. Y.-M. Lin and M. J. Miller, *The Journal of Organic Chemistry*, 2001, 66, 8282-8285.
- 2. J. Wu, T. Yi, T. Shu, M. Yu, Z. Zhou, M. Xu, Y. Zhou, H. Zhang, J. Han, F. Li and C. Huang, *Angewandte Chemie International Edition*, 2008, **47**, 1063-1067.
- 3. P. Yang, Q. Yang and X. Qian, *Tetrahedron*, 2005, **61**, 11895-11901.
- 4. J. H. Brannon and D. Magde, *The Journal of Physical Chemistry*, 1978, **82**, 705-709.
- 5 Z. Lou, P. Li, Q. Pan and K. Han, *Chemical Communications*, 2013, **49**, 2445-2447.

11. Cartesian coordinates for the optimized structures

Optimized S₀ state of NI-Se

С	-4.80607200	-1.22824500	-0.75162000
С	-3.37282700	-1.52996200	-0.56412000
С	-2.49829600	-0.54060400	-0.05266600
С	-2.99972800	0.74222700	0.27325200
С	-4.40739300	1.06571600	0.09048300
С	-2.89817000	-2.78869900	-0.88917500
С	-1.11676200	-0.85117700	0.12414300
С	-0.67504600	-2.14357200	-0.22580600
С	-1.54505400	-3.09435200	-0.72128100
С	-0.23010600	0.16981500	0.65393200
С	-0.77282600	1.42750200	0.95768300
С	-2.12037600	1.69507800	0.77419200
Н	-2.49962200	2.67728700	1.02530300

Н	-0.13969100	2.20863400	1.34879500
Н	-3.58386900	-3.53085300	-1.27544700
Н	-1.17706700	-4.07843500	-0.98088700
0	-5.60272400	-2.06394600	-1.17521800
0	-4.89257100	2.16423800	0.36629800
Ν	-5.23623800	0.05623900	-0.43264500
С	-6.66548800	0.37044800	-0.62560900
С	-7.51555100	0.06070900	0.60762800
Н	-7.00821800	-0.21077600	-1.47831300
Н	-6.72955100	1.42668400	-0.87497400
С	-8.99405700	0.38280000	0.37926800
Н	-7.40613300	-0.99696200	0.86468100
Н	-7.14062100	0.63803000	1.45782800
Н	-9.09603200	1.43998300	0.11181800
Н	-9.35913800	-0.18961100	-0.48017500
С	-9.86330400	0.07961300	1.60043500
Н	-10.91176800	0.31968900	1.40947100
Н	-9.80652000	-0.97847900	1.87025500
Н	-9.53956300	0.66182300	2.46744000
Н	0.36466200	-2.42266100	-0.11611100
С	2.11264700	0.82318400	1.28808800
Н	2.89313700	0.22642300	1.75905500
Н	1.71216500	1.48344500	2.05597700
Ν	1.07645800	-0.11412800	0.86330100
С	2.71129400	1.65756000	0.16537000
С	2.46126100	3.03146300	0.12760900
С	3.53423700	1.10942900	-0.83275200
С	2.98425200	3.83950500	-0.87790000
Н	1.84847900	3.47634900	0.90269500
С	4.05411700	1.91606500	-1.84451300
С	3.77949700	3.28087800	-1.87086600
Н	2.76853400	4.90100500	-0.88250200
Н	4.68220500	1.47783700	-2.60938500
Н	4.18950400	3.89788400	-2.66095300
Se	3.95320800	-0.79126800	-0.89520400
С	5.54408900	-0.86918500	0.22270100
С	6.12570800	0.25070900	0.81273300
С	6.10685300	-2.13329200	0.41678200
С	7.26857800	0.10197500	1.59743000
Н	5.70069300	1.23493500	0.66798600
С	7.24880500	-2.27046600	1.19974600
Н	5.65944600	-3.00995100	-0.03763700
С	7.83467700	-1.15409900	1.79418900
Н	7.71465600	0.97766400	2.05411600

Н	7.67900900	-3.25429200	1.34489800
Н	8.72282200	-1.26349300	2.40418800
Н	1.42446700	-1.01227900	0.56947500
Optin	nized TICT state of NI-Se		
С	-4.30883400	-1.56480800	0.37032400
С	-2.92102600	-1.91584600	0.50481200
С	-1.92955900	-1.25292600	-0.27252800
С	-2.31161200	-0.23694100	-1.18848200
С	-3.71780300	0.14024300	-1.33029000
С	-2.52824600	-2.92197900	1.42193000
С	-0.55373200	-1.60472900	-0.12534500
С	-0.20195500	-2.61256900	0.81394600
С	-1.19222100	-3.25140400	1.56331500
С	0.40976300	-0.92151400	-0.93535500
С	-0.00220800	0.07029700	-1.83552700
С	-1.34093300	0.41297000	-1.95803200
Н	-1.64151100	1.18219800	-2.65500700
Н	0.72318500	0.57578200	-2.45662800
Н	-3.28541100	-3.42305100	2.00843800
Н	-0.90361100	-4.01877400	2.27237700
0	-5.22673200	-2.10634300	1.02377400
0	-4.08908900	1.03709800	-2.10805600
Ν	-4.63826400	-0.54938100	-0.55793500
С	-6.05867200	-0.18210100	-0.69324600
С	-6.47946700	0.93829000	0.26001300
Н	-6.64138900	-1.07892200	-0.49871300
Н	-6.21652100	0.12326500	-1.72522600
С	-7.95365400	1.31371900	0.09340900
Н	-6.29609000	0.62088700	1.29087700
Н	-5.85504200	1.81847700	0.07995400
Н	-8.13320500	1.61894000	-0.94313300
Н	-8.57365100	0.42721100	0.26519200
С	-8.39328700	2.43347400	1.03776900
Н	-9.44835600	2.67951400	0.89690700
Н	-8.25462300	2.14333700	2.08284200
Н	-7.81223300	3.34362900	0.86558800
Н	0.82933500	-2.89096500	0.97804600
С	2.80927200	-0.77019000	-1.65954200
Н	2.66242700	0.29621400	-1.83877000
Н	2.77380700	-1.26898100	-2.63394100
Ν	1.75064700	-1.24752000	-0.78070700
С	4.16782300	-0.98443700	-1.03320300
С	5.19804800	-1.55795700	-1.77765500

0

0

Ν

С

С

С	4.45157000	-0.59048400	0.28261600
С	6.46704200	-1.73628000	-1.23297200
Н	4.99835300	-1.87371700	-2.79484900
С	5.71386700	-0.77637700	0.84057700
С	6.72727000	-1.34831100	0.07605100
Н	7.24846800	-2.18766300	-1.83166700
Н	5.90862700	-0.47363200	1.86132600
Н	7.70988700	-1.49125200	0.50756700
Se	3.06535700	0.13892500	1.41962900
С	2.91361500	1.93686000	0.77600100
С	3.82032100	2.50802200	-0.12207000
С	1.84296300	2.68567900	1.28377400
С	3.65045100	3.83167200	-0.50780700
Н	4.65168000	1.93474600	-0.50923100
С	1.68770100	4.00763300	0.88919100
Н	1.13982700	2.24118400	1.97756300
С	2.58858100	4.58332300	-0.00602100
Н	4.35272600	4.27790800	-1.20087100
Н	0.86141800	4.58794100	1.28010700
Н	2.46387100	5.61456300	-0.31141600
Н	1.92533000	-2.16999700	-0.40388100
Optimized I	CT state of NI-Se		
С	-4.37009000	-1.54728100	-0.14927600
С	-3.05204700	-1.66209800	0.41576100
С	-2.19011700	-0.53055400	0.47119000
С	-2.62712300	0.71851200	-0.04088900
С	-3.95756100	0.85093700	-0.62752300
С	-2.60414100	-2.90573000	0.92493100
С	-0.88314100	-0.65640100	1.03786000
С	-0.46811200	-1.92715300	1.51949500
С	-1.33349800	-3.02169600	1.45863400
С	-0.06046100	0.51307600	1.09977900
С	-0.51888900	1.72917000	0.57582200
С	-1.78238000	1.83503600	0.01715500
Н	-2.12362600	2.78051900	-0.37955400
Н	0.11467100	2.60414000	0.60869500
Н	-3.26528300	-3.75976500	0.88173100
Н	-0.99693200	-3.98104400	1.83444200

-5.18142900

-4.37957800

-4.75010600

-6.09131000

-7.16409200

-2.49655700

-0.28681000

-0.16727500

0.24525600

1.92910700

-0.21220500

-1.08445500

-0.66270000

-1.26047200

-0.25075900

Н	-6.33562100	-1.13354200	-1.69457500
Н	-6.02383500	0.56921000	-2.05815100
С	-8.54454600	0.37305700	-0.89891100
Н	-7.20388000	-0.49390900	0.55498500
Н	-6.88296800	1.19988300	0.20376300
Н	-8.49306800	1.10156800	-1.71530600
Н	-8.81809000	-0.58365300	-1.35681500
С	-9.63188600	0.79349200	0.09084000
Н	-10.60458000	0.87504200	-0.39985800
Н	-9.72736100	0.06704800	0.90255400
Н	-9.40159700	1.76396900	0.53892100
Н	0.52320100	-2.07568400	1.92344800
С	2.02536000	1.55609800	2.02780400
Н	2.73867000	1.20284400	2.77470600
Н	1.42066600	2.33184400	2.50569000
Ν	1.21084000	0.40818300	1.66058900
С	2.79794700	2.17397900	0.87562700
С	3.03109300	3.55073800	0.88564100
С	3.35265100	1.42348700	-0.16825200
С	3.79402200	4.16288100	-0.10172800
Н	2.60663400	4.14668500	1.68529600
С	4.11012300	2.03413600	-1.17291900
С	4.33456700	3.40325200	-1.13593300
Н	3.96155800	5.23218700	-0.06639800
Н	4.51533400	1.44400300	-1.98432100
Н	4.91950500	3.87257900	-1.91678200
Se	2.98928500	-0.46794300	-0.33253000
С	4.76509500	-1.17886600	-0.48712200
С	5.88976200	-0.56350900	0.07283300
С	4.87491200	-2.42174400	-1.12502100
С	7.12740900	-1.18353000	-0.03635500
Н	5.80281500	0.38447500	0.58591400
С	6.11916400	-3.02984900	-1.22641300
Н	4.00096000	-2.89996800	-1.55051400
С	7.24602400	-2.41357600	-0.68380900
Н	8.00123000	-0.70933400	0.39286300
Н	6.20877000	-3.98414000	-1.73004300
Н	8.21444300	-2.89142900	-0.76251300
Н	1.34320100	-0.38654800	2.26797700

Optimized S₀ state of NI-SeO

С	-4.76187100	-0.00687100	1.36274500
С	-3.31400300	-0.05035000	1.65019800
С	-2.42276400	-0.64357500	0.72367700

С	-2.92197300	-1.20368100	-0.47705000
С	-4.34686200	-1.18073100	-0.77783700
С	-2.84041200	0.49801100	2.82944000
С	-1.02711800	-0.66992200	1.01588900
С	-0.58720100	-0.10375200	2.22941900
С	-1.47367800	0.46867900	3.11987500
С	-0.12481900	-1.27673800	0.05601600
С	-0.66247200	-1.81532700	-1.12289100
С	-2.02631900	-1.77601000	-1.37249200
Н	-2.40581200	-2.20122400	-2.29273500
Н	-0.00973900	-2.26572800	-1.85627700
Н	-3.53841800	0.94743100	3.52296400
Н	-1.10845900	0.89603800	4.04464400
0	-5.56767500	0.51581700	2.13042400
0	-4.82930300	-1.64911300	-1.81001800
Ν	-5.19592100	-0.58984700	0.17564900
С	-6.64228700	-0.55809300	-0.11810700
С	-7.06519400	0.68954900	-0.89535000
Н	-7.16299700	-0.60577500	0.83512500
Н	-6.87278600	-1.45549900	-0.68685500
С	-8.56916700	0.70444400	-1.17841100
Н	-6.79038100	1.58136700	-0.32434600
Н	-6.51357000	0.72995500	-1.83908200
Н	-8.84102900	-0.20034700	-1.73256000
Н	-9.11497800	0.66111200	-0.22989000
С	-9.01270600	1.93760800	-1.96669900
Н	-10.08946400	1.92370800	-2.15053000
Н	-8.77823600	2.85688100	-1.42312700
Н	-8.50888500	1.98633200	-2.93583700
Н	0.46253300	-0.10513300	2.49306200
С	2.19123300	-1.91007900	-0.59945500
Н	2.19595700	-1.37224500	-1.55217200
Н	1.90993000	-2.94331500	-0.81917400
Ν	1.20288600	-1.32282900	0.30280100
С	3.56087100	-1.90422500	0.04064600
С	3.86153400	-2.89076900	0.98664700
С	4.55093400	-0.96032600	-0.24679200
С	5.09875100	-2.93326700	1.61785200
Н	3.11101900	-3.63773900	1.21887100
С	5.79867800	-1.00263400	0.36311200
С	6.07220700	-1.98801300	1.30516200
Н	5.30666900	-3.70983100	2.34355200
Н	6.55139800	-0.27425800	0.08732700
Н	7.04268300	-2.02069000	1.78492600

Se	4.30397000	0.44351100	-1.62996500
С	3.63845700	1.88177200	-0.45944300
С	4.55070500	2.69627800	0.19819900
С	2.26796400	2.09798600	-0.37026000
С	4.07445000	3.74132000	0.98568700
Н	5.61426300	2.52271300	0.09083300
С	1.80201000	3.14577700	0.42183700
Н	1.56798100	1.46592400	-0.90346200
С	2.70313100	3.96433800	1.09833400
Н	4.77487100	4.38265000	1.50674500
Н	0.73692200	3.32531600	0.50086300
Н	2.33749000	4.78078900	1.70898500
Н	1.56374200	-0.88158200	1.13191600
0	5.88986200	0.91006300	-1.94212800
Optimized I	CT state of NI-SeO		
С	-4.79588100	0.21397000	1.35371200
С	-3.38326900	0.19005400	1.62137500
С	-2.49054600	-0.51797500	0.77186900
С	-3.01033900	-1.22309600	-0.35003000
С	-4.45770200	-1.20086200	-0.64426200
С	-2.85778200	0.88613400	2.74392000
С	-1.09884600	-0.53635100	1.04546800
С	-0.60926800	0.16074400	2.17840300
С	-1.50168500	0.85908700	3.00263400
С	-0.24586000	-1.27006500	0.13979900
С	-0.80731200	-1.96834100	-0.96987600
С	-2.15929700	-1.94121000	-1.20985200
Н	-2.57940000	-2.46664500	-2.05456600
Н	-0.15890300	-2.51597700	-1.63802100
Н	-3.53298400	1.42971900	3.38913200
Н	-1.11253600	1.38893000	3.86406800
0	-5.62046900	0.82718900	2.05900400
0	-4.91382800	-1.78839200	-1.63361300
Ν	-5.26730500	-0.50764600	0.22300800
С	-6.71517200	-0.48327100	-0.05578900
С	-7.12972500	0.68066600	-0.95787800
Н	-7.22322600	-0.41715000	0.90283200
Н	-6.96942100	-1.43281400	-0.52181400
С	-8.63604800	0.68739400	-1.22864500
Н	-6.83789100	1.62258300	-0.48417400
Н	-6.58667800	0.61638300	-1.90547100
Н	-8.92349400	-0.26163100	-1.69380200
Н	-9.17301700	0.73859900	-0.27541400

С	-9.07353700	1.84738100	-2.12410300
Н	-10.15144900	1.82690900	-2.30051000
Н	-8.82778700	2.81023100	-1.66800000
Н	-8.57491300	1.80285400	-3.09613500
Н	0.43958900	0.16291300	2.43751900
С	2.07275800	-2.00427900	-0.46724300
Н	2.09798200	-1.57333100	-1.47152400
Н	1.75778100	-3.04447600	-0.57053500
Ν	1.08274100	-1.28934400	0.34293300
С	3.43045900	-1.96532600	0.19418900
С	3.69242100	-2.87479600	1.22558600
С	4.44454400	-1.07079000	-0.16002300
С	4.91909100	-2.89084500	1.87719700
Н	2.92117900	-3.58258200	1.50707800
С	5.68206500	-1.09044100	0.47343100
С	5.91859900	-1.99763300	1.49951100
Н	5.09863100	-3.60622800	2.67007300
Н	6.45954000	-0.40746100	0.15414400
Н	6.88100900	-2.01004600	1.99606600
Se	4.24294100	0.21405400	-1.66085100
С	3.89247300	1.82820700	-0.58587500
С	4.95812100	2.64621100	-0.23784000
С	2.58163800	2.15081700	-0.25232200
С	4.70526900	3.80672000	0.49034800
Н	5.96557900	2.38384600	-0.53605500
С	2.34050600	3.31272800	0.47753700
Η	1.75702600	1.51368100	-0.54914100
С	3.40013600	4.13774600	0.84880300
Η	5.52784900	4.45259500	0.77253200
Η	1.32485100	3.57478000	0.74732000
Н	3.20782500	5.04214000	1.41294600
Η	1.45636200	-0.74480700	1.10791800
0	5.83349000	0.43153000	-2.16156500
Optimized S ₀ s	tate of NI-O		
С	4.11312800	-1.44370700	0.55598300
С	2.71680300	-1.63160500	0.11390000
С	1.91957500	-0.50990200	-0.21953000

С	2.71680300	-1.63160500	0.11390000
С	1.91957500	-0.50990200	-0.21953000
С	2.46159400	0.79402300	-0.12380700
С	3.83505100	1.00461200	0.30953400
С	2.20122500	-2.91295700	0.02431100
С	0.57369600	-0.71061800	-0.64817700
С	0.08929400	-2.03196000	-0.72500900
С	0.88338500	-3.11239400	-0.39538600

С	-0.23463900	0.44591600	-0.99140800
С	0.34318000	1.71920600	-0.86974300
С	1.65575600	1.87783300	-0.45376100
Н	2.06586500	2.87669000	-0.37820000
Н	-0.23606500	2.59931800	-1.10249900
Н	2.82797900	-3.75630700	0.28145200
Н	0.48398200	-4.11589700	-0.46372600
0	4.84358000	-2.39039400	0.84389900
0	4.35555900	2.11798300	0.39823500
Ν	4.58664400	-0.13791400	0.64156300
С	5.98051400	0.06045200	1.08472700
С	6.98183000	0.04403300	-0.07164300
Н	6.20691500	-0.73197800	1.79409700
Н	6.01700600	1.01486700	1.60384100
С	8.41832900	0.25069000	0.41375800
Н	6.90667600	-0.91032900	-0.60105500
Н	6.71919100	0.82914900	-0.78670200
Н	8.48340500	1.20186700	0.95282400
Н	8.67059800	-0.53193100	1.13724700
С	9.43805600	0.23966300	-0.72595400
Н	10.45283700	0.39025100	-0.35052900
Н	9.41809000	-0.71305200	-1.26209200
Н	9.22809600	1.03268500	-1.44880900
Н	-0.92350200	-2.23190800	-1.04956800
С	-2.45661600	1.33596200	-1.75180600
Н	-3.17975300	0.89550900	-2.43880400
Н	-1.95139800	2.13603000	-2.29147200
Ν	-1.49997000	0.27622900	-1.43724700
С	-3.18128700	1.91014700	-0.55040900
С	-3.01530500	3.24069800	-0.16816000
С	-4.06627400	1.11697900	0.19183600
С	-3.69641200	3.77246900	0.92410900
Н	-2.34643600	3.87110800	-0.74307600
С	-4.74567200	1.63003200	1.29256300
С	-4.55883200	2.96127900	1.65419000
Н	-3.55328100	4.80943000	1.20093200
Н	-5.41640100	0.99737900	1.85862100
Н	-5.08868300	3.35804800	2.51162800
С	-5.36067900	-0.90456600	0.01332200
С	-6.57306000	-0.42880000	-0.47906000
С	-5.27916600	-2.13735600	0.64965700
С	-7.71900200	-1.20156600	-0.31883700
Н	-6.61710200	0.52879000	-0.98225600
С	-6.43206300	-2.90518200	0.79773300

Η	-4.32247700	-2.48500400	1.01870600	
С	-7.65374900	-2.43972400	0.31849700	
Η	-8.66420200	-0.83640300	-0.70196500	
Н	-6.37188100	-3.86704400	1.29225400	
Н	-8.54871100	-3.03773700	0.43715600	
Н	-1.89273200	-0.64997400	-1.41708600	
0	-4.17497300	-0.20805200	-0.19334700	
Optimized S ₁ s	tate of NI-O			
С	4.09496900	-1.41710200	0.62140100	
С	2.71965700	-1.57895000	0.23770900	
С	1.93311600	-0.46079500	-0.15090000	
С	2.52372700	0.83535400	-0.15913600	
С	3.93970800	1.01704200	0.22148200	
С	2.12518800	-2.87093900	0.23682000	
С	0.57517900	-0.62791300	-0.52069200	
С	0.01119100	-1.93050400	-0.50315000	
С	0.80163300	-3.02349700	-0.12733600	
С	-0.17251900	0.54811000	-0.90240100	
С	0.46014500	1.82607700	-0.90397500	
С	1.77762800	1.96370900	-0.53818600	
Н	2.24947300	2.93515400	-0.53992800	
Н	-0.10092400	2.70183400	-1.19256400	
Н	2.72056900	-3.72515000	0.52568200	
Н	0.35851200	-4.01245000	-0.12280700	
0	4.83184700	-2.36202800	0.96520100	
0	4.46656800	2.13667400	0.19524600	
Ν	4.63657100	-0.10147700	0.60868000	
С	6.04564800	0.06756400	1.00758600	
С	7.01844300	-0.04813100	-0.16742400	
Н	6.25972300	-0.69636800	1.75062600	
Н	6.13246100	1.04575200	1.47592400	
С	8.47266200	0.13113300	0.27436400	
Н	6.89602900	-1.02746600	-0.63928200	
Н	6.76791800	0.70459900	-0.92083400	
Н	8.58711000	1.11107000	0.75005000	
Н	8.71025000	-0.61358000	1.04163600	
С	9.46530200	0.00534400	-0.88221100	
Н	10.49364700	0.13687700	-0.53776600	
Н	9.39434000	-0.97798600	-1.35493900	
Н	9.27155200	0.75852200	-1.65083900	
Н	-1.01813800	-2.11057500	-0.77764600	
С	-2.41907700	1.46634900	-1.61683500	
Н	-3.08555600	1.03016800	-2.36117000	

Н	-1.90029700	2.29797700	-2.08505400
Ν	-1.46041600	0.41605600	-1.26673100
С	-3.21709300	1.95340300	-0.42402100
С	-3.05164500	3.24214300	0.07945000
С	-4.15291500	1.11035100	0.19022300
С	-3.79900600	3.69201400	1.16476700
Н	-2.33470900	3.90290300	-0.39409300
С	-4.90114800	1.54476600	1.28025600
С	-4.72060400	2.83816800	1.76234500
Н	-3.66256700	4.69928000	1.53747500
Н	-5.61420700	0.88042700	1.74937300
Н	-5.30256400	3.17222700	2.61263900
С	-5.39619200	-0.92388800	-0.14138000
С	-6.60840600	-0.49456200	-0.67311400
С	-5.28426300	-2.15133100	0.49898000
С	-7.72793300	-1.31129500	-0.54801200
Н	-6.67144400	0.46062000	-1.17915400
С	-6.41054800	-2.96360400	0.61181400
Н	-4.32639900	-2.46073000	0.89770000
С	-7.63338600	-2.54544600	0.09351900
Н	-8.67440900	-0.98414700	-0.96093500
Н	-6.32893600	-3.92250200	1.10887400
Н	-8.50751100	-3.17812000	0.18479700
Н	-1.86528300	-0.50837700	-1.21488200
0	-4.23572500	-0.17257600	-0.31397100