Supplementary Information

Fig. S1 XRD patterns of $Mg(BH_4)_2 \cdot 6NH_3 - xLiBH_4$ (x=0.5-6) systems prepared by mechanochemical method.

Fig. S2 XRD patterns of Mg(BH₄)₂·3NH₃-*x*LiBH₄ (*x*=1-6) systems prepared by mechanochemical method. A single phase (Li,Mg) mixed-cation borohydride triammoniate was detected with the composition of Li₂Mg(BH₄)₄·3NH₃.

Fig. S3 XRD patterns of Mg(BH₄)₂·2NH₃-*x*LiBH₄ (*x*=1-3) systems prepared by mechanochemical method. A single phase (Li,Mg) mixed-cation borohydride diammoniate was obtained with the composition of LiMg(BH₄)₃·2NH₃.

Fig. S4 XRD patterns of Mg(BH₄)₂·NH₃-*x*LiBH₄ (*x*=0.5, 1) systems prepared by mechanochemical method. No new diffraction peaks were observed in the XRD profiles of the post-milled Mg(BH₄)₂·NH₃-*x*LiBH₄ (*x*=0.5, 1) samples, and LiMg(BH₄)₃·2NH₃ and Mg(BH₄)₂ were detected as the resultant products.

Fig. S5 XRD patterns of the $Mg(BH_4)_2 \cdot 6NH_3 - 2M(BH_4)_n$ (M=Li, Ca, Na, K; n is the valence of M) systems prepared by mechanochemical method. $MgCa_2(BH_4)_6 \cdot 6NH_3$ was identified to be a new single-phase compound while no new reflection was detected for $Mg(BH_4)_2 \cdot 6NH_3 - 2NaBH_4$ and $Mg(BH_4)_2 \cdot 6NH_3 - 2KBH_4$ systems.

Fig. S6 XRD patterns of (a) Mg(BH₄)₂-2KBH₄ and (b) Mg(BH₄)₂-3KBH₄ systems after ball milling and subsequently ammoniation.

Fig.S7 MS curve of B₂H₆ during the thermal decomposition of Li₂Mg(BH₄)₄.6NH₃.

Fig. S8 MS spectra of Li₂Mg(BH₄)₄·6NH₃ and LiBH₄.

Fig. S9 An enlarge view of the MS spectrum of Li₂Mg(BH₄)₄·6NH₃ at low temperatures.

Fig. S10 (a) XRD patterns and (b) FTIR spectra of the re-hydrogenated Li₂Mg(BH₄)₄·6NH₃ samples at different stages.

Sample	Li ₂ Mg(BH ₄) ₄ ·6NH ₃	Mg(BH ₄) ₂ ·6NH ₃	LiBH ₄
	3349	3360	
N-H bands	3270	3268	
	3216	3202	
	2389 (shoulder)		2390
	2290	2292	2292
	2225	2248	2224
	1406	1406	
B-H bands	1263		1242
	1220	1203	
	1184		
	1124	1085	1126

Table S1. Absorption bands (in cm ⁻¹) obtained for Li ₂ Mg(BH ₄) ₄ ·6NH ₃ , Mg(BH ₄) ₂ ·6NH ₃ and
$LiBH_4$

Table S2. Experimental and crystallographic details for Li₂Mg(BH₄)₄·6NH₃.

Chemical formula	$Li_2Mg(BH_4)_4 \cdot 6NH_3$
Formula weight	199.7414
Crystal system	tetragonal
Space group	<i>P4</i> ₃ <i>2</i> ₁ <i>2</i> (no. 96)
Unit cell dimensions	<i>a</i> =10.7656(8) Å <i>b</i> =10.7658(8) Å <i>c</i> =13.843(1) Å
Z	4
Density (calculated)	$0.826877 \text{ g cm}^{-3}$
Volume	401 Å^3
2 θ [°]	$2\theta_{\min}=3^\circ, 2\theta_{\max}=90^\circ$
Diffractometer	Phillips X'Pert Pro X-ray
Wavelength	1.5418 Å
Measurement temperature	25 °C
Fitting factors	$R_{\rm wp}$ =0.0545 $R_{\rm p}$ =0.0409 χ^2 =2.316

Atom	Site	Х	У	Z
Mg1	4a	0.002(1)	0.998(1)	0.75
Li1	8b	-0.005(4)	0.498(6)	0.880(9)
B1	8b	0.939(1)	0.6659(8)	0.999(4)
H1	8b	0.887	0.6402	1.075
H2	8b	0.876	0.6274	0.931
H3	8b	0.044	0.6195	0.996
H4	8b	0.948	0.7789	0.993
B2	8b	0.1564(8)	0.558(1)	0.751(3)
H5	8b	0.1286	0.604	0.673
H6	8b	0.1221	0.449	0.755
H7	8b	0.1088	0.621	0.815
H8	8b	0.2693	0.565	0.759
N1	8b	0.118(2)	0.891(2)	0.8618(4)
H9	8b	0.189	0.840	0.8327
H10	8b	0.162	0.951	0.9087
H11	8b	0.068	0.830	0.9040
N2	8b	0.919(1)	0.102(1)	0.8637(4)
H12	8b	0.860	0.051	0.9065
H13	8b	0.865	0.173	0.8363
H14	8b	-0.019	0.146	0.9100
N3	8b	0.865(1)	0.837(1)	0.764(1)
H15	8b	0.776	0.868	0.754
H16	8b	0.876	0.764	0.717
H17	8b	0.866	0.798	0.832

Table S3. Experimental and calculated structural parameters of $Li_2Mg(BH_4)_4$ 6NH₃ (Space group $P4_32_12$, No. 96, a=10.7656(8) Å, c=13.843(1) Å and V=1604.4(3) Å³.)

Note: The uncertainties of the atomic coordinates for hydrogen atoms are not reported here because they were not freely refined. The isotropic thermal parameters (U_{iso}) were constrained to be identical for the same atom type or same rigid bodies: $U_{Mg}=2.0(1)$, $U_{Li}=1.8(1)$, $U_{NH3}=2.5(1)$, $U_{BH4}=2.2(2)$ (x100 Å²). All atomic and rigid body positions are fully occupied.

Table S4. Interaction distances (Å) and angles (°) for dihydrogen bonds.

Distance		Angles		Angels	
H_{11} ···H ₄	1.8680	N_1 - H_{11} ···· H_4	157.317	B_1 - H_4 ··· H_{11}	113.107
$H_{12} \cdots H_4$	1.9818	N_2 - H_{12} ··· H_4	167.435	B_1 - H_4 ··· H_{12}	115.773
$H_{17} \cdots H_4$	2.4060	N_3 - H_{17} ··· H_4	152.200	B_1 - H_4 ··· H_{17}	96.825
$H_{10} \cdots H_8$	1.8306	N_1 - H_{10} ··· H_8	175.926	B_2 - H_8 ···H_{10}	114.662
$H_{14} \cdots H_8$	1.8781	N_2 - H_{14} ···· H_8	168.597	B_2 - H_8 ···H ₁₄	112.757