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I. Comparison of the vibrational predissociation spectrum of the (Cys-H+)¯ isotopologue to 

the calculated harmonic spectra of different isomers 

     Figure S1 compares the vibrational predissociation spectrum of (Cys-H+)¯·D2 to the 

calculated harmonic spectra of six low energy isomers that were also considered in the IRMPD 

study of Oomens et. al.1  As discussed in the manuscript, the broadening of the carbonyl and 

CIHB regions as well as the presence of extra bands in the NH stretching region makes it 

difficult to compare the experimental spectrum with harmonic level calculations for a definitive 

structural assignment.  Nevertheless, we include a comparison for the interested reader.  To the 

right of each structure, its zero-point corrected relative energy is also given. 
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II. Comparison of the vibrational predissociation spectrum of the (Cys-D+)¯ isotopologue to 
the calculated harmonic spectra of additional isomers  
 
     Figure S2 gives the vibrational predissociation spectrum of the (Cys-D+)¯·D2 isotopologue 

(with D in all exchangeable sites) and the calculated harmonic spectra of six low energy isomers 

that were also considered in the IRMPD study of Oomens et. al.1  Traces (a)-(c) are the thiolate 

structures while (e)-(g) correspond to carboxylate structures.  In trace (a), the structure has the 

highest relative energy and an OD stretch is expected, which is clearly absent from the 

experimental spectrum.  The strucutres in traces (b) and (c) are very similar, differing by a 

rotation of the NH2 group about the C-N bond.   

     We also have included zero-point corrected energies of this heavy isotopologue to assess 

weather any of the isomers change in relative energy upon deuteration, modulating their 

population in the experimental spectrum.  Upon comparing Figures S1 and S2, it can be seen that 

the ordering in energy between the isomers is unchanged and the relative energies vary by about 

1-2 kJ·mol-1.  This may explain why the spectrum of (Cys-D+)¯ has two rather than four 

dominant peaks, as the weaker bands associated with the less dominant isomer would become 

less apparent. Another possibility is that the extra bands in the all H isomer results from Fermi 

resonances between two quanta in the NH bending and one quantum in the NH stretching 

fundamentals.  For example, at the harmonic level, the NH2 bending overtone is as 3329 cm-1, 

which is 300 cm-1 lower in energy than the symmetric stretching fundamental at 3459cm-1.  It is 

common for such anharmonic coupling to decrease in the heavier isomer.2,3  The presence of a 

minor isomer would not explain, however, the blue shift of the carbonyl, which becomes 

significantly sharper upon deuteration.  If the complexity of the carbonyl region in the all H 

isotopologue was only attributed to the presence of multiple isomers, there would be a major 

band at the same position as the all D isotopologue (1710 cm-1) unless completely different 
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III. Effect of the Tag on the Spectrum of (Cys-H+)¯ 

     One might expect the soft potential associated with proton transfer between the two 

competitive bases (thiolate and carboxylate) to be easily susceptible to perturbations from the 

solvation environment.  Thus, we have obtained spectra tagged with 1-2D2 and N2 (Fig. S3) to 

assess whether the strength and/or number of tags imparts a solvatochromic effect on the cyclic 

ionic hydrogen bonded stretching transition (ߥ஼ூு஻) and the carbonyl region (ߥ஼ை).  We have 

previously observed4 a tag-dependent solvatochromic shift for the C5- hydrogen bonded NH 

stretch of GlyGlyH+ because the binding of the tag to the free NH2 hydrogen atoms increases the 

proton affinity of the amine.  In the case of (Cys-H+)¯, the binding location of the tag is less 

apparent because the charge center is not expected to occur on the amine as it did in the cation 

example.  Thus, a future ab initio study using a method that includes dispersion interactions is 

warranted in order to identify likely binding cites of the tags and the consequence of these 

interactions on the Born Oppenheimer surface.  However, because the C-O bond lengths change 

according to Fig. 5 along the proton transfer coordinate, it is feasible that a solvation effect that 

impacts the shared proton may also lead to complication of the carbonyl region that should be 

manifested in the experimental spectrum.  It can be seen from Fig. S3 that the overall band 

structure in the ߥ஼ூு஻ and ߥ஼ை regions of the spectra are relatively unaffected by the addition of a 

second D2 tag, but change substantially when the species is tagged with N2.  It appears that the 

addition of N2 red-shifts the ߥ஼ூு஻ transition, which is evidence for a shallower potential curve 

connecting the thiolate and carboxylate structures.  This is consistent with the simultaneous 

broadening of the ߥ஼ை transition in the spectrum of the N2-tagged adduct as discussed in the 

“Low-Barrier Proton Transfer and Implications on the Vibrational Spectra of Cold (Cys-H+)¯ 

and (Cys-D+)¯ Ions” section of the manuscript.  Furthermore, the N2-taggeed species were 
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