- 1 ASSOCIATE CONTENT
- 2 Supporting Information

## 3 Sensitized Solar Cells with Colloidal PbS/CdS Core/Shell 4 Quantum Dots

5 Lai-Hung Lai,<sup>a</sup> Loredana Protesescu,<sup>b,c</sup> Maksym V. Kovalenko<sup>b,c</sup> and Maria Antonietta Loi<sup>a</sup>

<sup>a</sup>Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands

<sup>b</sup>Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Str. 10, Zurich, 8093, Switzerland

<sup>c</sup> EMPA-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, 8600, Switzerland





11 Figure S1. PbS/CdS (1.1 nm) QD sensitized solar cells in the polysulfide

12 electrolyte with and without methanol.

13



14

15 Figure S2. Absorbance of oleic-acid passivated colloidal QDs in chloroform.



Figure S3. (a) Reflectance and transmittance of QD sensitized electrodes
(Glass/FTO/TiO<sub>2</sub>/QDs) (b) Absorbance spectra of QD sensitized electrodes
(TiO<sub>2</sub>/QDs) (c) Reflection, transmission and absorption of Glass/FTO substrate.



Figure S4. (a) Nyquist plot of IMVS spectra of PbS/CdS(1.1nm) QD sensitized solar cells, measured by employing a 528 nm LED, scanned from 10 mA (corresponding to 0.22mW/cm<sup>2</sup> light intensity) to 500 mA (corresponding to 5.57 mW/cm<sup>2</sup> light intensity). (b) Light intensity dependent mean electron lifetime determined by IMVS measured under 528 nm LED illumination.



31 **Figure S5**. Charge injection efficiencies for cells with different CdS shell 32 thicknesses. The charge injection efficiency is obtained by  $\phi_{inj} = IQE/\eta_c$ , where 33 the  $\eta_c$  is measured at 10 mW/cm<sup>2</sup> (Table S1) is used.

## 36 **Table S1.** Equivalent circuit fitting results and other parameters of cells <sup>a</sup>

| Light<br>Intensity | $c_{\mu}^{,b}$                      | $\mathbf{r_{ct}}^{c}$                   | r <sub>r</sub> 'd     | $\tau_n^{\ e}$ | ${	au_d}^f$ | D <sub>e</sub> <sup>g</sup> | $\mu_e^h$                                       | $\mathbf{L}_{d}^{i}$ | $\eta_c^{\ j}$ |
|--------------------|-------------------------------------|-----------------------------------------|-----------------------|----------------|-------------|-----------------------------|-------------------------------------------------|----------------------|----------------|
| mWcm <sup>-2</sup> | μFcm <sup>-2</sup> μm <sup>-1</sup> | $\Omega \text{ cm}^2 \mu \text{m}^{-1}$ | $\Omega \ cm^2 \mu m$ | ms             | ms          | $m^2s^{-1}$                 | $\mathrm{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1}$ | μm                   | %              |
| PbS                |                                     |                                         |                       |                |             |                             |                                                 |                      |                |
| 100.0              | 358.08                              | 32.19                                   | 109.68                | 39.27          | 5.94E+02    | 2.69E-11                    | 1.05E-05                                        | 1.0                  | 31.7           |
| 91.2               | 170.53                              | 31.38                                   | 155.68                | 26.55          | 3.36E+02    | 4.76E-11                    | 1.85E-05                                        | 1.1                  | 34.2           |
| 79.4               | 166.65                              | 38.34                                   | 158.96                | 26.49          | 4.02E+02    | 3.98E-11                    | 1.55E-05                                        | 1.0                  | 31.7           |
| 50.1               | 180.79                              | 63.98                                   | 199.20                | 36.01          | 6.76E+02    | 2.37E-11                    | 9.21E-06                                        | 0.9                  | 29.0           |
| 31.6               | 189.94                              | 103.13                                  | 291.92                | 55.45          | 9.42E+02    | 1.70E-11                    | 6.61E-06                                        | 1.0                  | 31.7           |
| 10.0               | 132.69                              | 161.50                                  | 960.00                | 127.38         | 2.69E+03    | 5.94E-12                    | 2.31E-06                                        | 0.9                  | 29.0           |
| PbS/CdS(0.5nm)     |                                     |                                         |                       |                |             |                             |                                                 |                      |                |
| 100.0              | 315.79                              | 1.58                                    | 130.00                | 41.05          | 4.90E+01    | 3.27E-10                    | 1.27E-04                                        | 3.7                  | 75.6           |
| 91.2               | 316.45                              | 1.33                                    | 139.00                | 43.99          | 3.86E+01    | 4.15E-10                    | 1.62E-04                                        | 4.3                  | 82.3           |
| 79.4               | 314.59                              | 1.87                                    | 208.00                | 65.43          | 4.55E+01    | 3.51E-10                    | 1.37E-04                                        | 4.8                  | 84.5           |
| 50.1               | 361.82                              | 1.39                                    | 155.00                | 56.08          | 7.21E+01    | 2.22E-10                    | 8.64E-05                                        | 3.5                  | 74.2           |
| 31.6               | 356.04                              | 2.41                                    | 292.00                | 103.96         | 8.36E+01    | 1.91E-10                    | 7.45E-05                                        | 4.5                  | 83.1           |
| 10.0               | 367.23                              | 3.30                                    | 610.00                | 224.01         | 1.10E+02    | 1.46E-10                    | 5.68E-05                                        | 5.7                  | 88.2           |
| PbS/CdS(1.1nm)     |                                     |                                         |                       |                |             |                             |                                                 |                      |                |
| 100.0              | 892.45                              | 0.26                                    | 195.20                | 174.21         | 2.13E+01    | 7.50E-10                    | 2.92E-04                                        | 11.4                 | 96.6           |
| 91.2               | 891.09                              | 0.38                                    | 222.40                | 198.18         | 3.48E+01    | 4.60E-10                    | 1.79E-04                                        | 9.5                  | 95.2           |
| 79.4               | 880.38                              | 0.42                                    | 253.76                | 223.41         | 3.38E+01    | 4.74E-10                    | 1.84E-04                                        | 10.3                 | 95.9           |
| 50.1               | 847.88                              | 0.45                                    | 397.84                | 337.32         | 3.65E+01    | 4.38E-10                    | 1.71E-04                                        | 12.2                 | 97.0           |
| 31.6               | 817.18                              | 0.51                                    | 606.40                | 495.54         | 4.29E+01    | 3.73E-10                    | 1.45E-04                                        | 13.6                 | 97.6           |
| 10.0               | 718.56                              | 0.56                                    | 1312.80               | 943.32         | 4.28E+01    | 3.74E-10                    | 1.45E-04                                        | 18.8                 | 98.7           |

<sup>a</sup> values are determined based on the data measured at open-circuit condition under different light intensity by transmission line model fitting as the equivalent circuit shown in Fig. 3a.

41 of Nyquist impedance plots.

42 c electron transport resistance,  $R_{ct}$  (=  $r_{ct}L$ )

43 d interfacial charge recombination resistance,  $R_r^{'}$  (=  $r_r^{'}/L$ )

- 44 <sub>e</sub> the average electron lifetime in TiO<sub>2</sub>,  $\tau_n = C_{\mu} R_r$
- 45 <sup>f</sup> the average electron transit time,  $\tau_d = L^2/D_e$
- 46 <sup>g</sup> electron diffusion coefficient,  $D_e = (r_r / r_{ct})L^2 / (2\pi \tau_n)$
- 47 <sup>h</sup> electron mobility,  $\mu_e = D_e / k_B T$
- $48 \qquad {}^{\rm i} \, {\rm electron} \ {\rm diffusion} \ {\rm length}, \ L_d {=} ( \, \tau_n D_e )^{0.5}$

49 <sup>j</sup> charge collection efficiency<sup>S1-S3</sup>,  $\eta_c = \frac{\left(-L_d \alpha \cosh\left(\frac{L}{L_d}\right) + \sinh\left(\frac{L}{L_d}\right) + L_d \alpha e^{-\alpha L}\right) L_d \alpha}{(1 - e^{-\alpha L})(1 - L_d^2 \alpha^2) \cosh\left(\frac{L}{L_d}\right)}$ , where  $\alpha$  is the extinction coefficient of quantum dot-sensitized TiO<sub>2</sub> film. Here we assume the  $\alpha$  L equals to 1 for the calculation. Another well-adopted formula for the charge collection efficiency is  $\eta_c = 1 - \left(\frac{L}{L_d}\right)^2$ . However, it is only valid when the cell active layer is thin enough so that the photo-generated electrons either immediately transport to the electrodes or recombine. In the case L=L<sub>d</sub> results in  $\eta_c = 0$ , indicating this formula obviously deviates the real situation of the quantum dot-sensitized solar cells.



- 55 Supplementary References
- 56 S1. J. Halme, P. Vahermaa, K. Miettunen and P. Lund, *Adv Mater*, 2010, 22,
   57 E210-234.
- S2. X. Dang, H. Yi, M. H. Ham, J. Qi, D. S. Yun, R. Ladewski, M. S. Strano, P. T.
  Hammond and A. M. Belcher, *Nature nanotechnology*, 2011, 6, 377-384.
- 60 S3. L. Bertoluzzi, S. Ma, *Physical chemistry chemical physics : PCCP*, 2013, 15,
- 61 4283.
- 62