Electronic Supplementary Information

for

Structure and Kinetics of Chemically Cross-Linked Protein Gels from Small-Angle X-ray Scattering

Shuji Kaieda^{*a*}, Tomás S. Plivelic^{*b*} and Bertil Halle^{*a*}

^aDepartment of Biophysical Chemistry, Lund University, PO Box 124, SE-22100 Lund, Sweden ^bMAX IV Laboratory, Lund University, PO Box 118, SE-22100 Lund, Sweden

Fig. S1 Apparent form factor (black) and solution SAXS profiles (magenta and cyan) for BPTI (**a**), Mb (**b**) and IFABP (**c**). Dashed and dotted vertical lines indicate the q windows where the two solution scattering files were superimposed and where the Guinier analysis was performed, respectively (Sec. 2.3).

Fig. S2 Pair correlation function, g(r), for cross-linked BPTI (**a**), Mb (**b**), and IFABP (**c**), obtained by fast sine transform of the modified structure factor, S(q) (blue curve in Fig. 3). The dotted line indicates the asymptote $g(r \to \infty) = 1$. The negative g(r) at small *r* is an artifact caused by setting S(q) = 1 at high *q*.

Fig. S3 Back-calculated structure factor, S(q), for cross-linked BPTI (**a**), Mb (**b**) and IFABP (**c**). The red dashed curve is the inverse sine transform of the modified (non-negative) g(r). The blue curve is the original S(q) (blue curves in Fig. 3).

Fig. S4 Scattering cross section for BPTI monomer (red) and decamer (blue). The curves were calculated from the atomic coordinates of the crystal structures 1bpi¹ (monomer) and 1bhc² (decamer) using the program CRYSOL³ without hydration-layer correction.

		t (min)		
#	BPTI ^b	Mb ^c	IFABP ^c	
1	1.5	1.2	1.2	
2	6.8	2.2	2.8	
3	11.8	3.1	4.3	
4	16.9	4.1	5.9	
5	27.0	5.1	7.4	
6	37.2	6.0	8.9	
7	47.3	7.0	10.5	
8	62.6	7.9	12.0	
9	113.2	8.9	13.6	
10	178.9	9.8	15.1	
11	239.7	10.8	16.6	
12	300.3	11.7	18.2	
13	361.1	12.7	19.7	
14	421.7	13.6	22.0	
15	482.5	14.6	23.6	
16	507.9	15.6	25.1	

Table S1 Timing of kinetics series.^a

^a Time elapsed from GA addition to the middle of the irradiation period, including a 1 min dead time.

^b 60 s irradiation period.

^c 10 s irradiation period.

References

- 1 S. Parkin, B. Rupp and H. Hope, Acta Crystallogr., 1996, D52, 18–29.
- 2 C. Hamiaux, T. Prangé, M. Riès-Kautt, A. Ducruix, S. Lafont, J. P. Astier and S. Veesler, *Acta Crystallogr.*, 1999, **D55**, 103–113.
- 3 D. Svergun, C. Barberato and M. H. J. Koch, J. Appl. Crystallogr., 1995, 28, 768–773.