Supporting information

Understanding Improved Electrochemical Properties of NiO-doped NiF₂/C Composite Conversion Materials by X-ray Absorption Spectroscopy and Pair Distribution Function Analysis

Dae Hoe Lee^a, Kyler J. Carroll^a, Karena W. Chapman^b, Olaf J. Borkiewicz^b, Scott Calvin^c, Eric E. Fullerton^a, Ying Shirley Meng^a

^aDepartment of NanoEngineering, University of California San Diego, 9500 Gilman Drive,

La Jolla, CA 92093, USA

^bX-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

^cDepartment of Physics, Sarah Lawrence College, Bronxville, NY 10708, USA

Table S1. Parameters and reliability factors obtained by the Rietveld refinement of pure NiF₂,

NiO-NiF ₂	and NiO-NiF ₂ /C	XRD patterns.
----------------------	-----------------------------	---------------

NiF ₂ Space group: <i>P4₂/mnm</i>				NiO-NiF ₂ NiF ₂ Space group: <i>P4</i> ₂ /mnm				NiO-NiF ₂ /C NiF ₂ Space group: <i>P4</i> ₂ /mnm									
Atom	Site	х	Y	Z	Occ.	Atom	Site	x	у	Z	Occ.	Atom	Site	x	Y	Z	Occ.
Ni	2a	0	0	0	1	Ni	2a	0	0	0	1	Ni	2a	0	0	0	1
F	4f	0.298	0.298	0	2	F	4f	0.300	0.300	0	2	F	4f	0.298	0.298	0	2
$ a = b = 4.6675(6) \text{ Å, } c = 3.0632(9) \text{ Å} \\ R_{wp} = 2.26\%, R_B = 7.14\% \\ a = b = 4.6421(5) \text{ Å, } c = 3.0667(2) \text{ Å} \\ R_{wp} = 2.39\%, R_B = 5.61\% \\ c = 3.0667(2) \text{ Å} \\ R_{wp} = 3.66\%, R_B = 19.50\% \\ c = 3.0580(7) \text{ Å} \\ R_{wp} = 3.0580(7) \text{ Å} \\ R_$																	
						NiO Space group: <i>Fm</i> –3m					NiO Space group: <i>Fm</i> –3m						
						Atom	Site	Х	у	Z	Occ.	Atom	Site	х	Y	Z	Occ.
						Ni	4a	0	0	0	1	Ni	4a	0	0	0	1
						0	4b	0.5	0.5	0.5	1	0	4b	0.5	0.5	0.5	1
						a = b = c = 4.1648(9) Å $R_{wp} = 2.39\%, R_B = 7.19\%$											

Table S2. The comparison of the amount of conversion reaction calculated by the electrochemical data and the linear combination fit of XANES.

	1 st disc	charge (%)	1 st ch	arge (%)	2 nd discharge (%)			
_	NiF ₂	NiO-NiF ₂ /C	NiF ₂	NiO-NiF ₂ /C	NiF ₂	NiO-NiF ₂ /C		
Electrochemical data	128	109	64	91	89	104		
XANES	94.6	86.6	47	79.8	89.9	84.8		

It is worth to note that the amount of side reaction such as SEI formation affects the electrochemical data significantly resulting in the differences in conversion amount calculated by XANES. For example, the conversion is higher than 100% in pure NiF_2 electrode due to the side reactions. However, the tendency of conversion amount is very similar in both methods.

Figure S1. The cycling performances of 4 different systems, pure NiF₂, NiF₂/C, NiO-NiF₂, and NiO-NiF₂/C, at room temperature. Constant current of C/20 was applied, and the voltage range was $1.0 \sim 4.5$ V.

Figure S2. The electrochemical profiles of pure NiF₂ at room temperature and 70°C. Constant current of C/20 was utilized, and the voltage ranges were $1.0 \sim 4.5$ V for the room temperature and $1.5 \sim 4.5$ V for the elevated temperature cycling.

Figure S3. The 1st derivatives of XANES spectra of NiO-NiF₂/C at initial, 1st discharged, 1st charged and 2nd discharged state. It is clearly observed that the energy shifts from 8345 eV (Ni²⁺) to 8333 eV (Ni⁰) upon the discharge and moved back to 8345 eV after the charge.

Figure S4. Experimental k^3 -weighted $\chi(k)$ plots for 1^{st} and 2^{nd} discharged NiO-NiF₂/C and Ni foil as a reference (black dots).

Figure S5. Experimental Fourier transformed k^3 -weighted $\chi(k)$ plot and fits for NiF₂ at (a) 1st and (b) 2nd discharged states, and NiO-NiF₂/C at (c) 1st and (d) 2nd discharged states. R-factors are included in each figure.

(a)

(b)

Figure S6. Experimental PDF, G(r), profiles including refined fits and differences. (a) NiF₂ 1st discharge, (b) NiF₂ 2nd discharge, (c) NiO-NiF₂/C 1st discharge and (d) NiO-NiF₂/C 2nd discharge.

(b)

Figure S7. The schematics illustrating the conversion mechanisms in NiF_2 and $NiO-NiF_2/C$ at the 1^{st} and 2^{nd} discharge.

Figure S8. The electrochemical cycling properties of NiF₂ (black), and NiO-NiF₂/C with PVDF (red) and CMC (blue) binder systems at C/20 rate at room temperature, and pictures of the cycled electrodes (insets).

CMC binder systems were utilized to improve the capacity retention of volume expanding conversion materials. CMC shows the extended conformation in the solution, which facilitates an efficient networking process between the conductive agent and active materials. In addition, the chemical bonding between CMC binder and the active material particles contributes to the enhanced capacity retention suppressing the volume expansion.^{1, 2} Significantly improved cycling properties were observed in NiO-NiF₂/C with CMC binder until 9th cycle. Except for the large irreversible capacity at the 1st cycle, 91% of capacity was retained from the 2nd to 9th cycle. Obvious volume expansion was found in the PVDF electrodes after the cycling (see Figure 6. (insets)). Although the theoretical volume expansion is 24% in the NiF₂ material, no remarkable

volume expansion was detected in CMC binder system. The checmial bonding between CMC and active materials possibly suppresses the volume changes maintaining the electronic contact with Al substrate. The capacity, however, was abruptly faded at the 10th cycle in CMC system. It is speculated that the pulverization of the electrode may cause the loss of the cathode materials from the electrode leading to considerable amount of capacity fading.

References

- 1. J. Li, R. B. Lewis and J. R. Dahn, *Electrochem. Solid State Lett.*, 2007, 10, A17-A20.
- 2. J. Li, D.-B. Le, P. P. Ferguson and J. R. Dahn, *Electrochimica Acta*, 2010, 55, 2991–2995.