Supplementary Material

What Are the Preferred Horizontal Displacements of Aromatic-Aromatic Interactions in Proteins? Comparison with Calculated Benzene-Benzene Potential Energy Surface

5 Dragan B. Ninković, Jelena M. Andrić, Saša N. Malkov and Snežana D. Zarić

Data from Protein Data Bank

Fig. S1 The correlation of the normal distance (R) with the offset values (r); R < 10 Å and r < 10 Å.

10

15

20

45

25 The PDB search yielded 24 002 contacts in which centre of the phenyl ring from phenylalanine residue was found to be within the area that corresponds to R< 10 Å and r < 10 Å around another phenylanine ring. The data suggest that two interacting rings form ellipsoid on diagram. The final number of 6 919 structures were extracted from initial set of structures using equation of an ellipsoid (x/a)² + (y/b)² =1 where a=(r)=7Å and b=(R)=6Å.

Fig. S2 The correlation of the normal distance (R) with the offset values (r) for ellipsoid with R= 6 Å and r=7 Å

Fig. S3 Distributions of normal distance R for various tilt angles a) for the tilt P_1/P_2 angle in the range 0-50° b) for the tilt P_1/P_2 angle in the range 50-90°

For the tilt angle P_1/P_2 in the range 0-30° (Figure S3a) the distribution shows large number of interactions with R value in the range of 3.5-4.0 Å. These R values are typical for stacking interaction. The values of R increase with the tilt angles increase and reach its maximum in the range of 4.5-5.0 Å, for the torsion angles larger than 50° (Figure S3b).

Fig. S4 The mean force (according to Boltzmann law)[S1] for different r values a) for the tilt P_1/P_2 angle in the range 0-50° b) for the tilt P_1/P_2 angle in the range 50-90°

30

Results of Calculations

The geometry of isolated benzene molecule was optimized using B2PLYP-D2/def2-TZVP method. The optimized benzene geometry is a planar regular hexagonal ring, with a C-C bond of 1.392 Å and a C-H bond of 1.082 Å. 5

Fig. S5 The side view of the A orientation at different values of tilt angles (0°, 20°, 40°, 60° and 90°) for the offset r of 1.5Å.

Fig. S6 a) Calculated interaction energies (ΔE) presented on 2-D (up) and 3-D (down) diagrams; b) the optimal normal distances (R) of orientation A (Figure S4) for values of tilt P₁/P₂ angle of 0°, 20°, 40°, 60° and 90°. The values for angle 0° are obtained in 40 previous work¹⁵

Fig. S7 The side view of the B orientation at different values of tilt angles (0°, 20°, 40°, 60° and 90°) for the offset r of 1.5Å.

Fig. S8 a) Calculated interaction energies (ΔE) presented on 2-D (up) and 3-D (down) diagrams; b) the optimal normal distances (R) of orientation B (Figure S6) for values of tilt P₁/P₂ angle of 0°, 20°, 40°, 60° and 90°. The values for angle 0° are obtained in previous work¹⁵

50

60

55

5 Fig. S9 The side view of the C orientation at different values of tilt angles (0°, 20°, 40°, 60° and 90°) for the offset r of 1.5Å.

a)

30 Fig. S10 a) Calculated interaction energies (ΔE) presented on 2-D (up) and 3-D (down) diagrams; b) the optimal normal distances (R) of orientation C (Figure S8) for values of tilt P₁/P₂ angle of 0°, 20°, 40°, 60° and 90°. The values for angle 0° are obtained in previous work¹⁵

35

Fig. S11 The side view of the D orientation at different values of tilt angles (0°, 20°, 40°, 60° and 90°) for the offset r of 1.5Å.

55

60

a)

Fig. S12 a) Calculated interaction energies (ΔE) presented on 2-D (up) and 3-D (down) diagrams; b) the optimal normal distances 30 (R) of orientation D (Figure S10) for values of tilt P₁/P₂ angle of 0°, 20°, 40°, 60° and 90°. The values for angle 0° are obtained in previous work¹⁵

35

Fig.S13 The view of electrostatic potential map of benzene, C_6H_6 ; electrostatic potential increases from blue (V(r) < -8.9 kcal/mol) and green (V(r) = -8.9 to 0.0 kcal/mol) to yellow (V(r) = 0.0 to +6.7 kcal/mol) and red (V(r) > +6.7 kcal/mol); grey dots and lines represent atoms and bonds.

40

[S1] Manfred J. Sippl, J.Mol.Biol., 1990, 213, 859.

[**S2**] F. A. Bulat and A. Toro-Labbe, 'WFA: A suite of programs to analyse wavefunctions', unpublished ; F. A. Bulat, A. Toro-Labbe, T. Brinck, J. S. Murray, P. Politzer, *J. Mol. Model.*, 2010, **16**,1679.