Supporting Information

Theoretical and Experimental Studies of the Interactions between Au₂⁻ and Nucleobases

Guo-Jin Cao,^{a, b} Hong-Guang Xu,^a Weijun Zheng^{*,a} and Jun Li^{*,b}

^a Beijing National Laboratory for Molecular Sciences & State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Fax: (+86)62563167; E-mail: zhengwj@iccas.ac.cn

^b Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University Beijing 100084, China. Fax: (+86)62797472; E-mail: junli@mail.tsinghua.edu.cn

Table S1 The optimized structures, VDEs, and ADEs of UAu_2^- for all the tautomers of uracil^{*}. The VDEs and ADEs were not calculated when the isomers are higher than the lowest-energy structure by more than 0.76 eV.

ΔΕ	Structures	VDE	ADE
0		2.91	2.25
0.57		3.03	2.87
0.60		2.82	2.02
0.64		3.18	2.95

0.71	2.24	1.53
0.74	2.24	1.50
0.76	2.96	2.65
0.78		
0.80		

0.86		
1.09		
1.14		
1.17		
1.44		
1.51		

1.69	3.81	3.22
3.08 (spin=3)		

Table S2 The optimized structures	, VDEs, a	and ADEs of TAu2	for all	l the tautomers	of thymine*.
-----------------------------------	-----------	------------------	---------	-----------------	--------------

ΔΕ	The optimized structures	VDE	ADE
0		2.88	2.19
0.55		3.01	2.31
0.62		2.80	1.97

0.63	3.42	3.23
0.65	2.69	1.68
0.69	2.24	1.51
0.73		
0.75		
0.79		

1.10		
1.19		
1.20		
1.24		
1.40		
1.60		

*The energies are in eV.

Table S3 The optimized structures, VDEs, and ADEs of CAu_2^- for all the tautomers of cytosine*. The VDEs and ADEs were not calculated when the isomers are higher than the lowest-energy structure by more than 0.48 eV.

ΔΕ	Structures	VDE	ADE
0		2.84	2.67
0.06		3.03	2.13
0.07		2.84	2.13
0.09		2.74	1.83
0.14		2.75	2.57

0.14	2.71	2.54
0.14	2.70	2.55
0.18	2.79	2.10
0.48		
0.60		

0.62		
0.76		
0.81		
0.88		
0.99	3.58	3.38

ΔΕ	Structures	VDE	ADE
0		3.15	2.94
0.11		2.75	2.57
0.22		3.40	3.18
0.40		2.48	2.34
0.64		3.79	3.64

Table S4 The optimized structures, VDEs, and ADEs of AAu₂⁻ for all the tautomers of adenine^{*}

	•		
0.93		3.68	3.65

Table S5. The optimized structures	VDEs and ADEs of GAu-	for all the tautomers of quanine*
Table 55. The optimized structures,	v DES, and ADES of OAu_2	for all the tautomers of guainne

ΔΕ	Structures	VDE	ADE
0		2. 94	2. 09
0		2. 91	2. 70
0.1		3. 30	3. 02
0.15		3. 45	3. 28

0.17	2. 99	2. 81
0.2	2. 74	2. 57
0.22	2. 79	1.65
0.22	3. 56	3. 30
0.25	2. 68	1.84
0.26	2. 72	1. 58

0.32	2. 77	2. 33
0.47	2. 62	2. 35
0.57	2. 48	2. 30
0.59		
0.62		
0.66		

