## **Supplemental materials**

# Rapid Synthesis of Nitrogen-Doped Graphene for Lithium

### ion Battery Anode with Excellent Rate Performance and

### **Superlong Cyclic Stability**

Tao Hu,<sup>a,b</sup> Xiang Sun, <sup>b</sup>Hongtao Sun, <sup>b</sup>Guoqing Xin,<sup>b</sup> Dali Shao,<sup>c</sup> Changsheng Liu,<sup>a</sup>and Jie Lian<sup>b</sup>\*

 <sup>a.</sup> Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education Northeastern University, Shenyang, Liaoning 110004, China
<sup>b.</sup> Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
<sup>c.</sup> Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

[\*] E-mail: lianj@rpi.edu

| Nitrogen Source                   | Experimental method | Reaction time | Reference |  |  |  |  |
|-----------------------------------|---------------------|---------------|-----------|--|--|--|--|
| ~99% NH <sub>3</sub> +Ar (1:2V/V) | Heat treatment      | 2 h           | 14        |  |  |  |  |
| Acetonitrile vapors               | CVD                 | 3-15 min      | 15        |  |  |  |  |
| Lithium nitride                   | Solvothermal        | 6 h or 10 h   | 17        |  |  |  |  |
| Ammonia gas                       | Electrothermal      | unknown       | 18        |  |  |  |  |
| Nitrogen plasma                   | Plasma assisted     | 20 min        | 19        |  |  |  |  |
| Urea                              | Hydrothermal        | 3 h           | 20        |  |  |  |  |

Table S1 Common nitrogen-doped graphene by different method using different

#### dopants and experimental conditions



Figure S1. SEM images of the NGr show the porous morphologies (a) and the edge appearance (b)

Typical SEM images of the pGr at different magnifications(c and d).



Figure S2. XRD patterns of pGr, NGr and GO



**Figure S3.**  $N_2$  adsorption-desorption isotherm (a) and the pore size distribution plot (b) for the NGr powder

| Current<br>density<br>(Ag <sup>-1</sup> ) | Charge<br>(mAhg <sup>-1</sup> ) | 1 <sup>st</sup> cycle<br>Discharge<br>(mAhg <sup>-1</sup> ) | Efficiency<br>(%) | Charge<br>(mAhg <sup>-1</sup> ) | 2000 <sup>th</sup> cycle<br>Discharge<br>(mAhg <sup>-1</sup> ) | Efficiency<br>(%) | Capacity<br>retention<br>(%) |
|-------------------------------------------|---------------------------------|-------------------------------------------------------------|-------------------|---------------------------------|----------------------------------------------------------------|-------------------|------------------------------|
| 10                                        | 163                             | 190                                                         | 85.8              | 179                             | 180                                                            | 99.4              | 94                           |
| 20                                        | 90                              | 119                                                         | 75.6              | 106                             | 106                                                            | 101.9             | 87                           |
| 30                                        | 47                              | 76                                                          | 61.8              | 65                              | 65                                                             | 100               | 85                           |

Table S2 Rate performance of the NGr electrode under 10, 20 and 30Ag<sup>-1</sup>



Figure S4. N species content of NGr electrodes by XPS after lithiation and delithiation



Figure S5. Nyquist plots of the pGr and NGr electrodes (inset, Modeled equivalent

circuit of EIS)