Structural, Electronic, and Photophysical Properties of Thieno-Expanded Tricyclic Purine Analogs: A Theoretical Study

Laibin Zhang, Liuzhu Zhou, Jianxiang Tian,^{*} and Xiaoming Li

School of Physics and Engineering, Qufu Normal University, Qufu, 273165, P. R. China

Supporting Information

Contents:

- Table S1 Changes in Bond Lengths of ttA and ttG after Excitation (Å).
- Table S2 Changes in Bond Lengths of ttX and ttHX after Excitation (Å).
- Figure S1 The B3LYP/6-311++G(d,p) optimized structures of hydrated thieno-expanded tricyclic nucleobase analogs.
- Figure S2 Molecular orbitals involved in the six lowest electronic singlet transitions of ttA calculated at the TD-B3LYP/6-311++G(d,p) level.
- Figure S3 Molecular orbitals involved in the six lowest electronic singlet transitions of ttG calculated at the TD-B3LYP/6-311++G(d,p) level.
- Figure S4 Molecular orbitals involved in the six lowest electronic singlet transitions of ttX calculated at the TD-B3LYP/6-311++G(d,p) level.
- Figure S5 Molecular orbitals involved in the six lowest electronic singlet transitions of ttHX calculated at the TD-B3LYP/6-311++G(d,p) level.
- Figure S6 The B3LYP/6-31+G(d,p) optimized structures of hydrated base pairs (distances in Å).

^{*} Correspondence to: J. Tian; E-mail: jianxiangtian@gmail.com

ttA				ttG			
Bond	\mathbf{S}_0	\mathbf{S}_1	S_1-S_0	Bond	\mathbf{S}_0	S_1	S ₁ -S ₀
n1-c2	1.323	1.352	0.029	n1-c2	1.358	1.375	0.017
c2-n3	1.309	1.289	-0.020	c2-n3	1.283	1.289	0.006
n3-c4	1.333	1.365	0.032	c2-n2	1.362	1.363	0.001
c4-c5	1.389	1.440	0.051	n3-c4	1.366	1.347	-0.019
c5-c6	1.398	1.395	-0.003	c4-c5	1.371	1.475	0.104
c6-n6	1.355	1.365	0.010	c5-c6	1.434	1.423	-0.011
n1-c6	1.323	1.322	-0.001	c6-o6	1.192	1.199	0.007
c4-c3t	1.429	1.374	-0.055	n1-c6	1.403	1.416	0.013
c2t-c3t	1.354	1.433	0.079	c4-c3t	1.422	1.382	-0.040
c2t-S1t	1.742	1.759	0.017	c2t-c3t	1.358	1.385	0.027
s1t-c5	1.767	1.798	0.031	c2t-S1t	1.733	1.789	0.056
c2t-n7	1.356	1.326	-0.03	s1t-c5	1.755	1.734	-0.021
n7-c8	1.297	1.31	0.013	c2t-n7	1.359	1.335	-0.024
c8-n9	1.351	1.372	0.021	n7-c8	1.296	1.306	0.010
c3t-n9	1.37	1.369	-0.001	c8-n9	1.352	1.357	0.005
				c3t-n9	1.373	1.376	0.003

TABLE S1: Changes in Bond Lengths of ttA and ttG after Excitation (Å).

ttX				ttHX			
Bond	\mathbf{S}_0	S_1	S_1-S_0	Bond	\mathbf{S}_0	S_1	S ₁ -S ₀
n1-c2	1.372	1.372	0.000	n1-c2	1.354	1.369	0.015
c2-n3	1.374	1.376	0.002	c2-n3	1.27	1.282	0.012
c2-o2	1.188	1.188	0.000	n3-c4	1.374	1.349	-0.025
n3-c4	1.374	1.375	0.001	c4-c5	1.37	1.475	0.105
c4-c5	1.358	1.454	0.096	c5-c6	1.44	1.427	-0.013
c5-c6	1.449	1.43	-0.019	c6-06	1.191	1.198	0.007
сб-об	1.188	1.198	0.010	n1-c6	1.397	1.405	0.008
n1-c6	1.394	1.402	0.008	c4-c3t	1.421	1.38	-0.041
c4-c3t	1.419	1.366	-0.053	c2t-c3t	1.359	1.392	0.033
c2t-c3t	1.361	1.408	0.047	c2t-S1t	1.733	1.787	0.054
c2t-S1t	1.726	1.786	0.060	s1t-c5	1.749	1.741	-0.008
s1t-c5	1.75	1.745	-0.005	c2t-n7	1.359	1.333	-0.026
c2t-n7	1.358	1.328	-0.030	n7-c8	1.295	1.309	0.014
n7-c8	1.293	1.307	0.014	c8-n9	1.353	1.355	0.002
c8-n9	1.355	1.363	0.008	c3t-n9	1.372	1.375	0.003
c3t-n9	1.378	1.382	0.004				

TABLE S2: Changes in Bond Lengths of ttX and ttHX after Excitation (Å).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2014

Figure S1. The B3LYP/6-311++G(d,p) optimized structures of thieno-expanded tricyclic nucleobase analogs: (a) tt-Adenine, (b) tt-Guanine, (c) tt-Xanthine, and (d) tt-Hypoxanthine.

Figure S2. Molecular orbitals involved in the six lowest electronic singlet transitions of ttA calculated at the TD-B3LYP/6-311++G(d,p) level. Arrows indicate main contributions of the six lowest electronic singlet transitions and contributions larger than 10% are given. Orbital energies are given in parentheses.

Figure S3. Molecular orbitals involved in the six lowest electronic singlet transitions of ttG calculated at the TD-B3LYP/6-311++G(d,p) level. Arrows indicate main contributions of the six lowest electronic singlet transitions and contributions larger than 10% are given. Orbital energies are given in parentheses.

Figure S4. Molecular orbitals involved in the six lowest electronic singlet transitions of ttX calculated at the TD-B3LYP/6-311++G(d,p) level. Arrows indicate main contributions of the six lowest electronic singlet transitions and contributions larger than 10% are given. Orbital energies are given in parentheses.

Figure S5. Molecular orbitals involved in the six lowest electronic singlet transitions of ttHX calculated at the TD-B3LYP/6-311++G(d,p) level. Arrows indicate main contributions of the six lowest electronic singlet transitions and contributions larger than 10% are given. Orbital energies are given in parentheses.

Figure S6. The B3LYP/6-31+G(d,p) optimized structures of hydrated base pairs (distances in Å).