The Importance of Timescale for Hydrogen Bonding in Imidazolium Chloride Ionic Liquids.

Ioannis Skarmoutsos, Tom Welton and Patricia A. Hunt Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom

Additional definitions of time correlation functions (TCFs), used to prepare Figure 8 of the main Paper. Starting from the t=0 state where the HB-criterion has been applied, the individual component $x=R_{H...Cl}$, $R_{C...Cl}$ and $\phi \square H$ -C-Cl criteria have been applied at t=t to generate *individual* TCFs $C_{HB}^{x}(t)$, which contribute to the (overall) H-bond TCF.

$$C_{HB}^{x}\left(t\right) = \frac{\left\langle h_{ij}\left(0\right) \times h_{ij}^{x}\left(t\right)\right\rangle_{t^{*}}}{\left\langle h_{ij}\left(0\right)^{2}\right\rangle} \qquad C_{HB(n)}^{I}\left(t\right) = \frac{\left\langle \mathcal{C}h_{n}\left(0\right) \times \mathcal{C}h_{n}\left(t\right)\right\rangle_{t^{*}}}{\left\langle \mathcal{C}h_{n}\left(0\right)^{2}\right\rangle} \qquad \mathcal{C}h_{n}\left(t\right) = h_{n}\left(t\right) - \left\langle h_{n}(t)\right\rangle_{t^{*}}$$

Thus $h_{ij}^x(t) = 1$ if the distance $R_{H...Cl}$ (or distance $R_{C...Cl}$ or angle $\phi \mathbb{Z}H$ -C-Cl) at time t=0, is less than or equal to the cut-off value employed for the H-bonding criterion (using an angular cut-off of 30°), and the distance or angle has not exceeded the cut-off value for a period longer than t*=0 in which case $h_{ij}^x(t) = 0$. In addition, the TCFs for the H-bond state dynamics, $C_{HB(n)}(t)$, presented in Figure 10 have been calculated using the definition presented above and in Ref. 68 from the main paper.

Figure F1 (a) Continuous and (b) intermittent residence TCFs for [C₄C₁im]Cl. Black and grey are ring C-H, red are first C-H and blue are alkyl C-H.

H-atom	c1	c2	τ_1	τ_2	τ_3
C2-H	0.09316	0.04928	0.29326	66.73381	6442.50647
C4-H	0.11746	0.08034	0.46206	73.05993	4996.36556
C5-H	0.09593	0.06746	0.65406	80.07079	5378.54283
C6-H	0.46440	0.03357	0.41237	49.93836	6657.17580
C ⁷ -H	0.25295	0.14094	0.53165	40.87189	3305.20445
C8-H	0.34507	0.26897	0.35860	24.47911	2636.96111
C9-H	0.63470	0.22155	0.12099	18.65015	1137.27163
C ¹⁰ -H	0.60798	0.24773	0.11353	9.316560	1399.78351

Table T1 Parameters for the exponential fit ($C(t) = c_1 \exp(-t/t_1) + c_2 \exp(-t/t_2) + (1 - c_1 - c_2) \exp(-t/t_3)$) to the intermittent residence TCFs for [C₄C₁im]Cl.

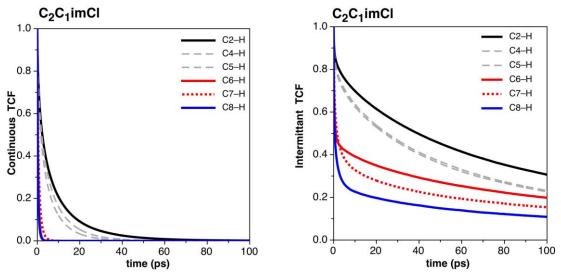


Figure F2 (a) Continuous and (b) intermittent residence TCFs for $[C_2C_1\text{im}]Cl$. Black and grey are ring C-H, red are first C-H and blue are alkyl C-H.

	c ₁	C ₂	τ_1	τ_2	τ_3
C ² -H	0.21195	0.50136	0.97644	55.11665	383.56014
C4-H	0.25902	0.48151	0.85079	40.65351	282.71207
C5-H	0.25211	0.49673	1.06527	42.65733	308.00967
C ⁶ -H	0.55517	0.21305	0.31668	45.26675	340.27127
C7-H	0.58992	0.21142	0.74235	27.11275	324.3122
C8-H	0.70591	0.14661	0.45182	25.1938	290.62338

Table T2 Parameters for the exponential fit ($C(t) = c_1 \exp(-t/t_1) + c_2 \exp(-t/t_2) + (1 - c_1 - c_2) \exp(-t/t_3)$) to the intermittent residence TCFs for [C₂C₁im]Cl.

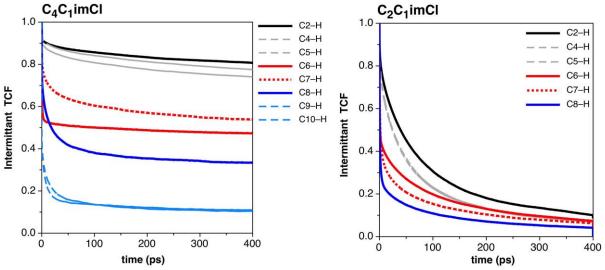


Figure F3 Long time intermittent TCFs for (a) $[C_4C_1im]Cl$ and (b) $[C_2C_1im]Cl$. Black and grey are ring C-H, red are first C-H and blue are alkyl C-H.

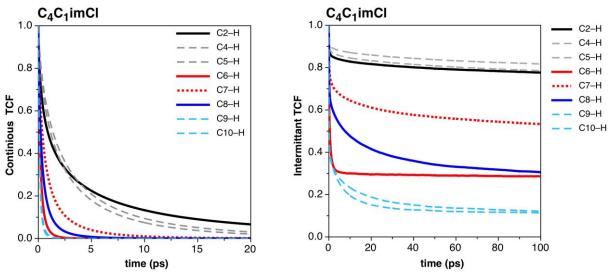


Figure F4 (a) Continuous and (b) intermittent H-bond TCFs for $[C_4C_1im]Cl$. Black and grey are ring C-H, red are first C-H and blue are alkyl C-H.

H-atom	C ₁	C ₂	τ_1	τ_2	τ_3
C ² -H	0.15883	0.06482	0.20234	58.08314	6027.78672
C4-H	0.14014	0.07027	0.2418	57.39527	4285.21455
C5-H	0.11574	0.0567	0.26773	51.09677	4128.78632
C ⁶ -H	0.40824	0.29764	0.08451	1.04379	4458.81171
C7-H	0.30839	0.14579	0.32754	32.12979	2307.91593
C8-H	0.40802	0.27149	0.2246	21.5083	1553.47059
C9-H	0.64496	0.20045	0.09338	12.00476	441.01373
C ¹⁰ -H	0.60791	0.25017	0.09636	6.76139	407.40945

Table T3 Parameters for the exponential fit ($C(t) = c_1 \exp(-t/t_1) + c_2 \exp(-t/t_2) + (1 - c_1 - c_2) \exp(-t/t_3)$) to the intermittent H-bond TCFs for $[C_4C_1\text{im}]Cl$, 60° angular cut-off.

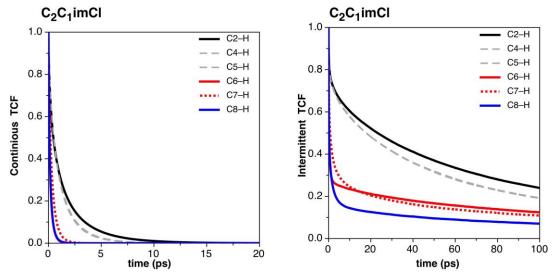


Figure F5 (a) Continuous and (b) intermittent H-bond TCFs for $[C_2C_1\mathrm{im}]Cl$. Black and grey are ring C-H, red are first C-H and blue are alkyl C-H.

	c ₁	C ₂	τ_1	τ_2	τ_3
C ² -H	0.30078	0.46824	0.59403	49.59836	343.06931
C4-H	0.3013	0.47434	0.57277	38.56703	254.82172
C5-H	0.30184	0.48243	0.6381	39.80561	277.06233
C6-H	0.73358	0.11844	0.22746	44.55992	341.65263
C7-H	0.6579	0.19201	0.5169	19.85986	296.69665
C8-H	0.6657	0.21582	0.18041	4.5518	226.95897

Table T4 Parameters for the exponential fit $(C(t) = c_1 \exp(-t/t_1) + c_2 \exp(-t/t_2) + (1 - c_1 - c_2) \exp(-t/t_3))$ to the intermittent H-bond TCFs for $[C_2C_1\text{im}]Cl$, 60° angular cut-off.

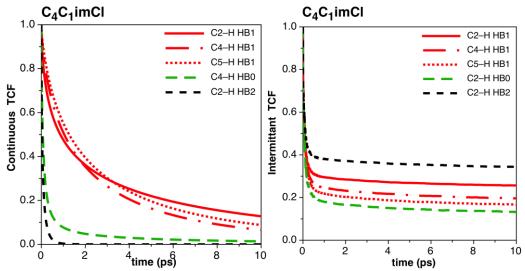


Figure F6 (a) Continuous and (b) intermittent H-bond state TCFs for [C₄C₁im]Cl.

		C ₁	C ₂	τ_1	τ_2	τ_3
	$n_{HB} = 0$	0.80194	0.07362	0.06549	5.17907	212.77892
C ² -H	$n_{HB} = 1$	0.69191	0.06022	0.05611	5.97582	519.94817
	$n_{HB} = 2$	0.60909	0.05648	0.0553	6.79116	672.94646
	$n_{HB} = 0$	0.74887	0.07528	0.09359	7.10524	215.61573
C4-H	$n_{HB} = 1$	0.74481	0.06746	0.08043	6.65705	250.89793
	$n_{HB} = 2$	0.69725	0.05945	0.06162	7.57775	375.1323
C5-H	$n_{HB} = 0$	0.76939	0.07621	0.09855	5.25609	241.34802
	$n_{HB} = 1$	0.774	0.0711	0.08994	6.91465	294.03505
	$n_{HB} = 2$	0.73368	0.07587	0.06583	12.61041	641.65965

Table T5 Parameters for the exponential fit $(C(t) = c_1 \exp(-t/t_1) + c_2 \exp(-t/t_2) + (1 - c_1 - c_2) \exp(-t/t_3))$ to the intermittent H-bond state TCFs for $[C_4C_1\text{im}]Cl$.

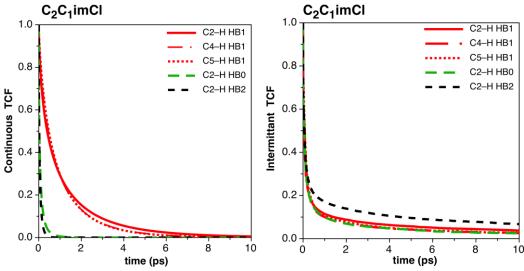


Figure F7 (a) Continuous and (b) intermittent H-bond state TCFs for [C₂C₁im]Cl.

The values presented in below correspond to numerical integrals, however since the TCF have already decayed to zero, the use of these fitting functions was not necessary. However, in order to be complete these are provided.

		c ₁	c ₂	τ_1	τ_2	τ_3
	$n_{HB} = 0$	0.70974	0.22877	0.0482	0.60832	12.39304
C ² -H	$n_{HB} = 1$	0.76407	0.17152	0.04705	1.01871	20.77262
	$n_{HB} = 2$	0.74661	0.15297	0.05391	1.78484	23.81166
	$n_{HB} = 0$	0.76065	0.17145	0.08504	0.86946	11.40991
C4-H	$n_{HB} = 1$	0.75615	0.18141	0.06754	0.72108	12.27741
	$n_{HB} = 2$	0.75665	0.16019	0.04555	0.82393	18.52332
C5-H	$n_{HB} = 0$	0.76861	0.16641	0.09406	1.10844	12.55995
	$n_{HB} = 1$	0.77115	0.16707	0.07909	0.94601	12.47833
	$n_{HB} = 2$	0.76395	0.15766	0.04636	0.86728	16.86652

Table T6 Parameters for the exponential fit ($C(t) = c_1 \exp(-t/t_1) + c_2 \exp(-t/t_2) + (1 - c_1 - c_2) \exp(-t/t_3)$) to the intermittent H-bond state TCFs for [C₄C₁im]Cl.

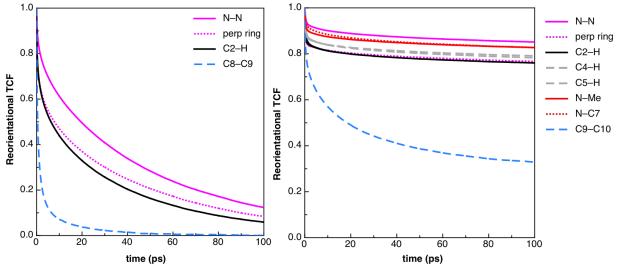


Figure F8 (a) Reorientational dynamics represented by the Legendre polynomial of rank 2 (l=2) for $[C_2C_1$ im]Cl and $[C_4C_1$ im]Cl. The specific unit vectors are described in the text below.

Normalised reorientational TCFs for the cationic species have been obtained:

$$C(t) = \frac{\left\langle P_l \not\in u_i(t) \cdot u_i(0) \right] \right\rangle}{\left\langle P_l \not\in u_i(0) \cdot u_i(0) \right] \right\rangle}$$

where P_l denote the Legendre polynomial of rank l, and u_i are unit vectors, aligned along the C²-H bond (C²-H), or aligned along the vector connecting N¹ and N³ (N-N), or aligned along the cross-product of the N-N and C²-H vectors, which is a vector perpendicular to the ring (perp ring), or along the terminal bond of the alkyl chain (C³-C³) in C₂C₁im⁺ or C³-C¹⁰ in C₄C₁im⁺, denoted C-C. The exponential fit has been taken to 500ps. Fitting was initiated from c_1 =0.33 c_2 =0.33, t_1 =0.1 t_2 =10, t_3 =1000 or 10000. Where a poor χ^2 was obtained the fit was restarted using similar values to those obtained for like fits. The "Robust" algorithm from Pro-fit package† was used, integration was undertaken using the "Analyse" feature.

unit vector	c ₁	c_2	τ_1	τ_2	τ_3	χ^2
C2-H	0.33	0.23	0.39	9.43	50.26	0.81
perp ring	0.32	0.20	0.34	9.72	59.60	0.78
N-N	0.23	0.34	1.01	27.77	75.68	0.61
C-C	0.52	0.36	0.29	2.09	19.19	0.08

Table T7 Parameters for the exponential fit $(C(t) = c_1 \exp(-t/t_1) + c_2 \exp(-t/t_2) + (1 - c_1 - c_2) \exp(-t/t_3))$ to the reorientational Legendre polynomial of rank 2 (l=2) for $[C_2C_1\text{im}]Cl$.

unit vector	c ₁	c_2	τ_1	τ_2	τ_3	χ^2
C2-H	0.17	0.07	0.41	50.77	13761	0.17
perp ring	0.17	0.07	0.32	57.34	15854	0.10
N-N	0.09	0.06	0.81	52.45	13223	0.06
N-C7	0.10	0.07	1.04	50.10	10327	0.10
C-C	0.33	0.35	1.04	31.92	2458	1.37

Table T8 Parameters for the exponential fit ($C(t) = c_1 \exp(-t/t_1) + c_2 \exp(-t/t_2) + (1 - c_1 - c_2) \exp(-t/t_3)$) to the reorientational Legendre polynomial of rank 2 (l=2) for [C₄C₁im]Cl.

[†] pro Fit 6.2.11 by QuantumSoft, Bühlstr. 18, CH-8707 Uetikon am See, Switzerland

To enable a more direct comparison the time correlation functions have been evaluated on an equivalent basis below. The numerical integration time is reduced slightly due to the Legendre polynomial becoming negative before 400ps for the C²-H reorientation.

unit vector	C 1	C 2	τ_1	τ_2	τ ₃	χ^2	numerical to 365ps	τ 🗆 🗆 🗆
							10 303ps	
<i>l</i> =1 C ² -H	0.14	0.16	0.65	17.57	74.82	3.72	54.88	56
<i>l</i> =2 C ² -H	0.33	0.23	0.39	9.43	50.26	0.81	24.40	24
[C ₄ C ₁ im]Cl <i>l</i> =1 C ² -H	0.06	0.03	0.49	58.83	14473	0.03	330	12842
<i>l</i> =1 perp ring	0.12	0.10	0.40	9.90	73.76	0.79	58.16	58
<i>l</i> =2 perp ring	0.32	0.20	0.34	9.72	59.60	0.78	30.54	31
[C ₄ C ₁ im]Cl l=1 perp ring	0.06	0.03	0.36	57.73	14835	0.002	318	13502
<i>l</i> =1 N¹-N²	0.08	0.12	1.08	38.97	145.77	0.34	111.95	122
<i>l</i> =2 N ₁ -N ₂	0.23	0.34	1.01	27.77	75.68	0.61	42.42	42
[C ₄ C ₁ im]Cl <i>l</i> =1 N ¹ -N ²	0.03	0.03	0.89	56.00	33590	0.001	343	31576
C ² -H Continuous	0.26	0.40	0.38	3.77	15.37	0.05	6.89	7
C ² -H Intermittent	0.21	0.50	0.98	55.12	383.56	0.55	95.29	139
<i>l</i> =1 C-C	0.56	0.18	1.13	17.02	145.25	0.66	39.54	42
<i>l</i> =2 C-C	0.52	0.36	0.29	2.09	19.19	0.08	3.11	3

Table T9 Parameters for the exponential fit ($C(t) = c_1 \exp(-t/t_1) + c_2 \exp(-t/t_2) + (1 - c_1 - c_2) \exp(-t/t_3)$) to the reorientational Legendre polynomial of rank 1 (l=1) for [C_2C_1 im]Cl (unless otherwise noted) and integration parameters to produce the time constant τ .

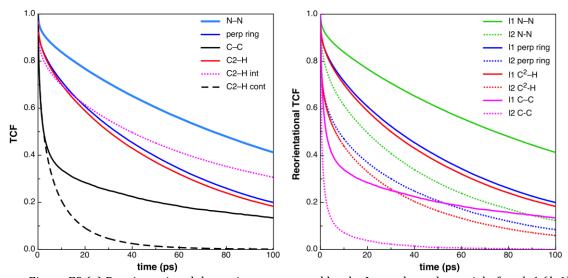


Figure F9 (a) Reorientational dynamics represented by the Legendre polynomial of rank 1 (l=1) for [C₂C₁im]Cl compared with the intermittent and continuous residence TCF decay of the C²-H H-bond, (b) Comparison of the rank 1 (l=1) and rank 2 (l=2) reorientational Legendre time CFs

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is @ The Owner Societies 2014