Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2014

Table 2 Comparison of Ionization potentials (IP) and Electron affinities (EA) of 17 semiconducting and insulating materials from this work and the values from Photoemission, estimated IPs and EAs using Mulliken electronegativity scale (see eq.(3) and Ref.⁹), and values from electrochemical measurements (at pH=1). Results from this work are surface orientation dependent and therefore, we specify the (hkl) surface orientation and provide the corresponding surface energies E_{hkl} .

		This work					Photoemission ^a		From Mulliken		Electrochemistry ^b	
	(111)				E E 87/8/21	F /(N)			electronegativities		pH=1	
	$\frac{(hkl)}{(10\overline{10})}$	$E_g [eV]$	IP [eV]	EA[eV]	$E_{hkl} [eV/A^2]$	$E_g^a [eV]$	IP [eV]	EA [eV]	IP [eV]	EA [eV]	IP [eV]	EA [eV]
GaN	(1010)		6.78	3.52	0.096						dd	a and a cond
GaN	(1120)	3.26	6.73	3.47	0.102	3.4	$6.0 - 6.9^{\circ}$	$2.6 - 3.5^{\circ}$	6.49	3.09	$6.67^a - 7.50^a$	$3.53^a - 4.10^a$
GaAs	(110)	1.20	5.49	4.30	0.026	1.42	5.56	4.14	4.80	3.38	4.96 – 5.51	3.61 – 4.08
GaP	(110)	2.56	6.37	3.82	0.041	2.27	6.01	3.74	5.34	3.07	5.60 - 5.83	3.38 - 3.60
InP	(110)	1.28	6.09	4.81	0.032	1.34	5.85	4.51	4.80	3.46	5.63	4.29
SnO_2	(110)	3.43	9.13	5.70	0.064	3.6	8.9 ^e	5.3	8.01	4.41	8.10 - 8.55	4.63 – 4.91
SnO_2	(100)		9.16	5.73	0.069							
SnO_2	(101)		8.66	5.23	0.089							
SnO_2	(001)		7.47	4.04	0.114							
ZnO	(1010)		7.53	4.30	0.054							
ZnO	$(11\bar{2}0)$	3.23	7.60	4.37	0.056	3.4	7.82	4.42	7.65	4.25	$7.38 - 7.77^{l}$	$4.23 - 4.37^{l}$
ZnS	(110)	3.69	7.57	3.88	0.026	3.7	7.5	3.8	7.25	3.55		
ZnSe	(110)	2.61	6.77	4.16	0.018	2.7	6.82	4.12	6.61	4.16	5.74	3.04
CdS	$(10\bar{1}0)$		7.20	4.75	0.020							
CdS	$(11\bar{2}0)$	2.45	7.15	4.70	0.020	2.6	7.26	4.66	6.58	3.98	5.14 - 6.50	2.70 - 4.12
CdSe	$(10\bar{1}0)$		6.42	4.74	0.011							
CdSe	$(11\bar{2}0)$	1.68	6.38	4.70	0.011	1.75	6.62	4.87	6.02	4.27	6.02 – 6.18	4.21 - 4.41
TiO_2^{rut}	(110)	2.84	7.51	4.67	0.044	3.03			7.32	4.30	7.25 – 7.47	4.28 - 4.44
TiO_2^{rut}	(100)		7.78	4.94	0.055							
TiO_2^{rut}	(101)		6.93	4.09	0.074							
$\text{TiO}_2^{\overline{r}ut}$.	(001)		5.58	2.74	0.095							
$TiO_2^{\overline{a}na.}$	(101)	3.20	7.82	4.62	0.041	3.23			7.42	4.19	7.25 – 7.47	4.28 - 4.42
MnŌ	(100)	3.27	5.08	1.80	0.040	3.5^{f}			7.04	3.54		
NiO	(100)	3.41	4.98	1.80	0.053	3.5^{f}			7.51	4.01	5.33 ^g	1.73 ^g
Cu_2O	(111)	2.03	5.49	3.46	0.046	2.2^{f}	5.66^{h}	3.56^{h}	6.42	4.22	5.61 ⁱ	3.41^{i}
Fe_2O_3	$(01\bar{1}2)$	1.81	6.70	4.89	0.064	2.1^{f}			6.92	4.82	6.95	4.85
Fe_2O_3	(0001)		5.70	3.89	0.069							
SrTiO ₃	$(001)^{*}$	3.14	6.71	3.57	0.065	3.2	$7.1^{j} - 7.5^{k}$	$3.9^{j} - 4.3^{k}$	6.92	3.72	$7.28^{l} - 7.64$	$4.08^{l} - 4.44$
SrTiO ₃	(001)**		4.41	1.27	0.065							

*TiO₂ terminted, **SrO terminated ^aRef. ³³ if not stated otherwise; ^bRefs. ^{5,6,8,20,57} if not stated otherwise ^cRef. ³⁶ and the references therein; ^dRef. ⁵⁸; ^eRef. ⁶⁹; ^fRef. ²⁶ and the references therein; ^gRef. ⁶⁰; ^hRef. ³⁷; ⁱRef. ⁶¹; ^jRef. ³⁸; ^kRef. ^{39,40} ¹Ref. 59

Fig. 7 Calculated GW band edge shifts Δ VBM and Δ CBM relative to the base GGA+U calculations for 17 materials studied in this work.