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I. Details of the analytical derivation of k* for a single metal-binding site (eqn (21), Figure 2).

Equation (17) in the main text may be rewritten in the form

k® = (271,D,N,) f,, (a)wf F(a,0)da (S1)

o=y
where we have introduced the function F defined by

F(a,0) =[5, + 15, cos(a — ) |[T; cos(p) + 5, cos(a) ]/ T° (S2)

and we developed eqn (17) using the relationships cos(ﬂ):(T2+§052—T02)/(2T><§05) and

Y2 that are obtained upon inspection of Figure 2. F(a,0) can be

r = (5 +5,7 + 255, c0s(ct ~ )
Taylor-expanded in terms of o =S /T, for o <<1. Under such condition, the quantity 1/7° in egn (S2)
is

(%7 +5,° + 25, cos(a - (p)T’/2 ~ % {1— 30 cos(a — @) + %2 (15¢c0s*(a — @) — 3)} . (S3)

0

After combining egns (S2) and (S3) and retaining the only terms of order o,c, 5, eqn (S2) reads as
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F(a,0)=of(a)+o’f,(a)+c’f,(a) (S4)
where
f,(cr) = cos(¢) cos(a — ) (S5)
f,(a) = cos(p) [1— 3cos’(a — ¢)] +cos(a — @) cos(a) (S6)
f,(ar) = —3c0s() cos(cr — ) + Cos(¢p) cos(a — )| (15/2) cos’ (@ — ) — (3/2) | +.. -
+c0s(a) —3¢os’ (o — ) cos(a)
After evaluation of the integral in eqn (S1) with F(«, o) given by eqns (S4)-(S7), we obtain
0S - 2 1 - 3 3 - 1 -

k> = kayp(a/rp)cos((p){asm(y)+a (—E)SIH(Z;/)+G (§S|n(3;/)—§sm(y)j} (S8)
From Figure 2, it is straightforward to show that

y=nl2+dpl2=rl2+arcsin(o). (S9)
With help of trivial trigonometry, we further have for o <<1

sin(y) = cos(arcsin(o)) =v1-o’ ~1-0%/2 (S10)
sin(2y) = —sin(2arcsin(o)) = —20V1-0° ~6° - 20 (S11)

2

sin(3y) = —cos(3arcsin(o)) = —1-o° (1-40°) ~ 9; -1 (S12)
Combining egns (S10)-(S12) and eqgn (S8), we finally obtain

ki* =k, ,(@)cos(p) {o+O0(c")}, (S13)

which is egn (18) given in the main text. A successful comparison between results obtained from egn (S13)

and those derived numerically following the approach detailed in the main text, is given in Figure S1.
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Figure S1. Dependence of k;° on the polar angle ¢ in the hard particle limit (a = O.95rp) for two values
of electrolyte concentrations (T, =10, 1, =0.1 with r, =20 nm) and a single charged metal-binding site

located at (T; =T, —S,,®) (see nomenclature in Figure 2), D=10"° m” s’ Numerical calculation

corresponds to evaluation from eqgn (3) and analytical results pertain to prediction from eqgn (18), with the
electrostatic potential derived from eqgns (20),(21) (smeared-out electrostatics) in both cases. The total
charge of the soft shell layer is Q =100e. Under the conditions of Figure S1, the parameter & = 2.5x10

involved in egn (18) is << 1, which justifies the Taylor decomposition of k.* with respect to o .

I1. Derivation of the potential distribution for point-like charges in a porous particle under Debye-

Hickel condition.

We adopt the spherical coordinate system (|r| , @, @) with the origin at the center of a porous particle.

The local charge density of the point-like charges distributed throughout the particle may be written in

terms of Dirac delta functions according to
NS

p(r)=e>.8(r-r,) (S14)
i=1

where T, is the position of the charge i and the delta function is further defined as

S(r-n) = Viﬁ 5(| - [F)5(cos(6) — cos(6))5(¢— 0,) (s15)

p

with Vp the particle volume. Within the framework of the Debye Huickel approximation, egn (20) in the

main text reads in spherical coordinates

AY(F|.0,0) = (x1,) y(F|,0.0) = =(x1.)* 5, (F|,0.0)  with (S16)
o e &1l .
Prix (|r | ,0,p) = mgﬁé‘qr | - |ri |)5(C05(9) —c0s(68))o (¢ —¢,) (S17)

The solution of eqn (S16) is expressed by the well-known Green function for the Helmholtz equation, i.e.

e L exp{-xr, [T T}
27FcV, 4z|F T

y(F|.6.9) = (518)

p i=l
In order to test the validity of our numerical scheme, we considered the situation where seven point-like
charges e were randomly distributed from the center of a soft particle to its outer surface along the radial
direction. In order to avoid numerical instabilities, the electrostatic potential distributions were evaluated up
to small sphere of radius o — 0 that enclosed each point-like charge within the particle. Figure S2 shows a

perfect agreement between the analytical results obtained from eqn (S18) and the results obtained from our
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numerical solution of linearized Poisson-Boltzmann equation in the extremes of thin and thick electric

double layers as compared to particle radius (T, =10, KT, = 0.1 with r, =20nm) (eqns (20),(22)).
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Figure S2. Electrostatic potential profiles as the function of the radial distance from the porous particle
centre for seven randomly distributed point-like charges e located at the center of the ligands. Comparison

between numerical results (eqns (20),(22) with s, — 0) and the analytical expression given by eqn (S18).
(a) T, =10, (b) KT, = 0.1. r, =20nm. Vertical bars indicate the positions of the ligands.

I11. Examples of statistical distribution of site-to-site distances in the soft particle limit for uniform
and non-uniform site distributions.
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Figure S3. Statistical distribution of the site-to-site distance in the soft particle limit a =0.01r, (N, =70).
(a) Uniform distribution, r, =20nm, (b) Non-uniform distribution, r, =20nm, (c) uniform distribution,

r, = 10nm . Uniform and non-uniform site distributions correspond here to the density probability functions

2
®(X,Z)=1/7 and ®(7,7):6(l—\/72+72) Iz, respectively. For each case, we give the

corresponding spatial distribution of ligands within the porous particle.
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