## Supporting information

# Speciation dynamics of metals in dispersion of nanoparticles with discrete distribution of charged binding sites. 

Pavel D. Polyakov, ${ }^{1,2}$ Jérôme F. L. Duval ${ }^{1,2^{*}}$<br>${ }^{1}$ Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, 15 avenue du Charmois, Vandœuvre-lès-Nancy, F-54501, France.<br>${ }^{2}$ CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, 15 avenue du Charmois, Vandœuvre-lès-Nancy, F-54501, France.

* Corresponding author:

Jérôme F. L. Duval: jerome.duval@univ-lorraine.fr
Tel: 00333835962 63. Fax: 0033383596255 .
I. Details of the analytical derivation of $k_{a}^{\text {os }}$ for a single metal-binding site (eqn (21), Figure 2).

Equation (17) in the main text may be rewritten in the form
$k_{1}^{\text {os }}=\left(2 \pi r_{\mathrm{p}} D_{\mathrm{M}} N_{\mathrm{a}}\right) f_{\mathrm{el}}(\bar{a}) \int_{\varphi-\gamma}^{\varphi+\gamma} F(\alpha, \sigma) \mathrm{d} \alpha$
where we have introduced the function $F$ defined by
$F(\alpha, \sigma)=\left[\bar{S}_{\text {os }}{ }^{2}+\bar{r}_{0} \bar{S}_{\text {os }} \cos (\alpha-\varphi)\right]\left[\bar{r}_{0} \cos (\varphi)+\bar{S}_{\text {os }} \cos (\alpha)\right] / \bar{r}^{3}$
and we developed eqn (17) using the relationships $\cos (\beta)=\left(\bar{r}^{2}+\bar{s}_{\mathrm{os}}{ }^{2}-\bar{r}_{0}^{2}\right) /\left(2 \bar{r} \times \overline{\mathrm{os}}_{\mathrm{os}}\right)$ and $\bar{r}=\left(\bar{r}_{0}^{2}+\bar{S}_{\mathrm{os}}^{2}+2 \bar{r}_{0} \bar{S}_{\text {os }} \cos (\alpha-\varphi)\right)^{1 / 2}$ that are obtained upon inspection of Figure 2. $F(\alpha, \sigma)$ can be Taylor-expanded in terms of $\sigma=\bar{S}_{\text {os }} / \bar{r}_{0}$ for $\sigma \ll 1$. Under such condition, the quantity $1 / \bar{r}^{3}$ in eqn (S2) is

$$
\begin{equation*}
\left[\bar{r}_{0}^{2}+\bar{S}_{\mathrm{os}}^{2}+2 \bar{r}_{0} \overline{\mathrm{~S}}_{\mathrm{os}} \cos (\alpha-\varphi)\right]^{-3 / 2} \approx \frac{1}{\bar{r}_{0}^{3}}\left\{1-3 \sigma \cos (\alpha-\varphi)+\frac{\sigma^{2}}{2}\left(15 \cos ^{2}(\alpha-\varphi)-3\right)\right\} . \tag{S3}
\end{equation*}
$$

After combining eqns (S2) and (S3) and retaining the only terms of order $\sigma, \sigma^{2}, \sigma^{3}$, eqn (S2) reads as

$$
\begin{equation*}
F(\alpha, \sigma) \approx \sigma f_{1}(\alpha)+\sigma^{2} f_{2}(\alpha)+\sigma^{3} f_{3}(\alpha) \tag{S4}
\end{equation*}
$$

where

$$
\begin{align*}
f_{1}(\alpha)= & \cos (\varphi) \cos (\alpha-\varphi)  \tag{S5}\\
f_{2}(\alpha)= & \cos (\varphi)\left[1-3 \cos ^{2}(\alpha-\varphi)\right]+\cos (\alpha-\varphi) \cos (\alpha)  \tag{S6}\\
f_{3}(\alpha)= & -3 \cos (\varphi) \cos (\alpha-\varphi)+\cos (\varphi) \cos (\alpha-\varphi)\left[(15 / 2) \cos ^{2}(\alpha-\varphi)-(3 / 2)\right]+\ldots  \tag{S7}\\
& +\cos (\alpha)-3 \cos ^{2}(\alpha-\varphi) \cos (\alpha)
\end{align*}
$$

After evaluation of the integral in eqn (S1) with $F(\alpha, \sigma)$ given by eqns (S4)-(S7), we obtain

$$
\begin{equation*}
k_{1}^{\mathrm{os}}=k_{\mathrm{a}, \mathrm{p}}\left(a / r_{\mathrm{p}}\right) \cos (\varphi)\left\{\sigma \sin (\gamma)+\sigma^{2}\left(-\frac{1}{2}\right) \sin (2 \gamma)+\sigma^{3}\left(\frac{3}{8} \sin (3 \gamma)-\frac{1}{8} \sin (\gamma)\right)\right\} \tag{S8}
\end{equation*}
$$

From Figure 2, it is straightforward to show that

$$
\begin{equation*}
\gamma=\pi / 2+d \varphi / 2=\pi / 2+\arcsin (\sigma) . \tag{S9}
\end{equation*}
$$

With help of trivial trigonometry, we further have for $\sigma \ll 1$

$$
\begin{align*}
& \sin (\gamma)=\cos (\arcsin (\sigma))=\sqrt{1-\sigma^{2}} \approx 1-\sigma^{2} / 2  \tag{S10}\\
& \sin (2 \gamma)=-\sin (2 \arcsin (\sigma))=-2 \sigma \sqrt{1-\sigma^{2}} \approx \sigma^{3}-2 \sigma  \tag{S11}\\
& \sin (3 \gamma)=-\cos (3 \arcsin (\sigma))=-\sqrt{1-\sigma^{2}}\left(1-4 \sigma^{2}\right) \approx \frac{9 \sigma^{2}}{2}-1 \tag{S12}
\end{align*}
$$

Combining eqns (S10)-(S12) and eqn (S8), we finally obtain
$k_{1}^{o s}=k_{\mathrm{a}, \mathrm{p}}(\bar{a}) \cos (\varphi)\left\{\sigma+O\left(\sigma^{4}\right)\right\}$,
which is eqn (18) given in the main text. A successful comparison between results obtained from eqn (S13) and those derived numerically following the approach detailed in the main text, is given in Figure S1.


Figure S1. Dependence of $k_{\mathrm{a}}^{\text {os }}$ on the polar angle $\varphi$ in the hard particle limit ( $a=0.95 r_{\mathrm{p}}$ ) for two values of electrolyte concentrations ( $\kappa r_{\mathrm{p}}=10, \kappa r_{\mathrm{p}}=0.1$ with $r_{\mathrm{p}}=20 \mathrm{~nm}$ ) and a single charged metal-binding site located at ( $\bar{r}_{0}=r_{\mathrm{p}}-S_{\mathrm{os}}, \varphi$ ) (see nomenclature in Figure 2), $D=10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. Numerical calculation corresponds to evaluation from eqn (3) and analytical results pertain to prediction from eqn (18), with the electrostatic potential derived from eqns (20),(21) (smeared-out electrostatics) in both cases. The total charge of the soft shell layer is $Q=100 e$. Under the conditions of Figure S1, the parameter $\sigma=2.5 \times 10^{-3}$ involved in eqn (18) is $\ll 1$, which justifies the Taylor decomposition of $k_{a}^{\text {os }}$ with respect to $\sigma$.

## II. Derivation of the potential distribution for point-like charges in a porous particle under DebyeHückel condition.

We adopt the spherical coordinate system $(|\boldsymbol{r}|, \theta, \varphi)$ with the origin at the center of a porous particle. The local charge density of the point-like charges distributed throughout the particle may be written in terms of Dirac delta functions according to
$\rho_{\mathrm{fix}}^{\mathrm{ds}}(\boldsymbol{r})=e \sum_{i=1}^{N_{s}} \delta\left(\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}\right)$
where $\boldsymbol{r}_{\boldsymbol{i}}$ is the position of the charge $i$ and the delta function is further defined as
$\delta\left(\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}\right)=\frac{1}{V_{\mathrm{p}}} \frac{1}{|\overline{\boldsymbol{r}}|^{2}} \delta\left(|\overline{\boldsymbol{r}}|-\left|\overline{\boldsymbol{r}_{\boldsymbol{i}}}\right|\right) \delta\left(\cos (\theta)-\cos \left(\theta_{i}\right)\right) \delta\left(\varphi-\varphi_{i}\right)$
with $V_{\mathrm{p}}$ the particle volume. Within the framework of the Debye Hückel approximation, eqn (20) in the main text reads in spherical coordinates

$$
\begin{align*}
& \Delta y(|\overline{\boldsymbol{r}}|, \theta, \varphi)-\left(\kappa r_{\mathrm{p}}\right)^{2} y(|\overline{\boldsymbol{r}}|, \theta, \varphi)=-\left(\kappa r_{\mathrm{p}}\right)^{2} \bar{\rho}_{\text {fix }}(|\overline{\boldsymbol{r}}|, \theta, \varphi)  \tag{S16}\\
& \bar{\rho}_{\mathrm{fix}}(|\overline{\boldsymbol{r}}|, \theta, \varphi)=\frac{e}{2 z F C^{*} V_{\mathrm{p}}} \sum_{i=1}^{N_{\mathrm{s}}} \frac{1}{|\overline{\boldsymbol{r}}|^{2}} \delta\left(|\overline{\boldsymbol{r}}|-\left|\overline{\boldsymbol{r}_{\boldsymbol{i}}}\right|\right) \delta\left(\cos (\theta)-\cos \left(\theta_{i}\right)\right) \delta\left(\varphi-\varphi_{i}\right) \tag{S17}
\end{align*}
$$

The solution of eqn (S16) is expressed by the well-known Green function for the Helmholtz equation, i.e.
$y(|\overline{\boldsymbol{r}}|, \theta, \varphi)=\frac{e}{2 z F c^{*} V_{\mathrm{p}}} \sum_{i=1}^{N_{s}} \frac{\exp \left\{-\kappa r_{\mathrm{p}}\left|\overline{\boldsymbol{r}}-\overline{\boldsymbol{r}}_{\boldsymbol{i}}\right|\right\}}{4 \pi\left|\overline{\boldsymbol{r}}-\overline{\boldsymbol{r}}_{\boldsymbol{i}}\right|}$
In order to test the validity of our numerical scheme, we considered the situation where seven point-like charges $e$ were randomly distributed from the center of a soft particle to its outer surface along the radial direction. In order to avoid numerical instabilities, the electrostatic potential distributions were evaluated up to small sphere of radius $\sigma \rightarrow 0$ that enclosed each point-like charge within the particle. Figure S 2 shows a perfect agreement between the analytical results obtained from eqn (S18) and the results obtained from our
numerical solution of linearized Poisson-Boltzmann equation in the extremes of thin and thick electric double layers as compared to particle radius $\left(\kappa r_{\mathrm{p}}=10, \kappa r_{\mathrm{p}}=0.1\right.$ with $\left.r_{\mathrm{p}}=20 \mathrm{~nm}\right)$ (eqns (20),(22)).
a)

b)


Figure S2. Electrostatic potential profiles as the function of the radial distance from the porous particle centre for seven randomly distributed point-like charges $e$ located at the center of the ligands. Comparison between numerical results (eqns (20),(22) with $S_{\mathrm{os}} \rightarrow 0$ ) and the analytical expression given by eqn (S18).
(a) $\kappa r_{\mathrm{p}}=10$, (b) $\kappa r_{\mathrm{p}}=0.1 . r_{\mathrm{p}}=20 \mathrm{~nm}$. Vertical bars indicate the positions of the ligands.

## III. Examples of statistical distribution of site-to-site distances in the soft particle limit for uniform

 and non-uniform site distributions.

Figure S3. Statistical distribution of the site-to-site distance in the soft particle limit $a=0.01 r_{\mathrm{p}}$ ( $N_{\mathrm{s}}=70$ ). (a) Uniform distribution, $r_{\mathrm{p}}=20 \mathrm{~nm}$, (b) Non-uniform distribution, $r_{\mathrm{p}}=20 \mathrm{~nm}$, (c) uniform distribution, $r_{\mathrm{p}}=10 \mathrm{~nm}$. Uniform and non-uniform site distributions correspond here to the density probability functions $\Phi(\bar{x}, \bar{z})=1 / \pi$ and $\Phi(\bar{x}, \bar{z})=6\left(1-\sqrt{\bar{x}^{2}+\bar{z}^{2}}\right)^{2} / \pi$, respectively. For each case, we give the corresponding spatial distribution of ligands within the porous particle.

