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I. Details of the analytical derivation of  for a single metal-binding site (eqn (21), Figure 2).  os

ak

Equation (17) in the main text may be rewritten in the form 

os
1 p M a el(2 ) ( ) ( , )dk r D N f a F

ϕ γ

ϕ γ

π α σ α
+

−

= ∫        (S1) 

where we have introduced the function F defined by 

[ ]2 3
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and we developed eqn (17) using the relationships ( ) (2 2 2
os 0 oscos( ) / 2r s r r sβ = + − × )  and 

2 2 1
0 os 0 os( 2 cos(r r s r s α ϕ= + + − / 2))  that are obtained upon inspection of Figure 2. ( , )F α σ  can be 

Taylor-expanded in terms of os 0/s rσ =  for 1σ << . Under such condition, the quantity 31/ r  in eqn (S2) 

is  
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After combining eqns (S2) and (S3) and retaining the only terms of order 2, , 3σ σ σ , eqn (S2) reads as 
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2 3
1 2 3( , ) ( ) ( ) ( )F f f fα σ σ α σ α σ α≈ + +         (S4) 

where 

1( ) cos( )cos( )f α ϕ α= ϕ−           (S5) 

2
2 ( ) cos( ) 1 3cos ( ) cos( ) cos( )f α ϕ α ϕ α ϕ⎡ ⎤= − − + −⎣ ⎦ α       (S6) 
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After evaluation of the integral in eqn (S1) with ( , )F α σ  given by eqns (S4)-(S7), we obtain 
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From Figure 2, it is straightforward to show that  

/ 2 / 2 / 2 arcsin( )dγ π ϕ π= + = + σ .        (S9) 

With help of trivial trigonometry, we further have for 1σ <<  

2 2sin( ) cos(arcsin( )) 1 1 / 2γ σ σ= = − ≈ σ−       (S10) 

2 3sin(2 ) sin(2arcsin( )) 2 1 2γ σ σ σ σ= − = − − ≈ − σ      (S11) 

2
2 2 9sin(3 ) cos(3arcsin( )) 1 (1 4 ) 1

2
σγ σ σ σ= − = − − − ≈ −      (S12) 

Combining eqns (S10)-(S12) and eqn (S8), we finally obtain    

{ }os 4
1 a,p ( )cos( ) ( )k k a Oϕ σ σ= + ,        (S13) 

which is eqn (18) given in the main text. A successful comparison between results obtained from eqn (S13) 

and those derived numerically following the approach detailed in the main text, is given in Figure S1. 
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Figure S1. Dependence of  on the polar angle os
ak ϕ  in the hard particle limit ( p0.95a = r ) for two values 

of electrolyte concentrations ( ,p 10rκ = p 0.1rκ =  with pr = 20 nm) and a single charged metal-binding site 

located at 0 p os(r r s , )ϕ= −  (see nomenclature in Figure 2), 910D −=  m2 s-1. Numerical calculation 
corresponds to evaluation from eqn (3) and analytical results pertain to prediction from eqn (18), with the 
electrostatic potential derived from eqns (20),(21) (smeared-out electrostatics) in both cases. The total 
charge of the soft shell layer is . Under the conditions of Figure S1, the parameter 100Q = e σ = 2.5×10-3  
involved in eqn (18) is << 1, which justifies the Taylor decomposition of  with respect to os

ak σ . 
 

II. Derivation of the potential distribution for point-like charges in a porous particle under Debye-

Hückel condition. 

We adopt the spherical coordinate system ( r ,θ ,ϕ ) with the origin at the center of a porous particle. 

The local charge density of the point-like charges distributed throughout the particle may be written in 

terms of Dirac delta functions according to 

s
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where  is the position of the charge  and the delta function is further defined as ir i

2
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with pV  the particle volume. Within the framework of the Debye Hückel approximation, eqn (20) in the 

main text reads in spherical coordinates 
2 2
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The solution of eqn (S16) is expressed by the well-known Green function for the Helmholtz equation, i.e. 
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In order to test the validity of our numerical scheme, we considered the situation where seven point-like 

charges  were randomly distributed from the center of a soft particle to its outer surface along the radial 

direction. In order to avoid numerical instabilities, the electrostatic potential distributions were evaluated up 

to small sphere of radius 

e

0σ →  that enclosed each point-like charge within the particle. Figure S2 shows a 

perfect agreement between the analytical results obtained from eqn (S18) and the results obtained from our 
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numerical solution of linearized Poisson-Boltzmann equation in the extremes of thin and thick electric 

double layers as compared to particle radius ( p 10rκ = , p 0.1rκ =  with pr = 20nm) (eqns (20),(22)).  

 

 

 
Figure S2.  Electrostatic potential profiles as the function of the radial distance from the porous particle 
centre for seven randomly distributed point-like charges e  located at the center of the ligands. Comparison 
between numerical results (eqns (20),(22) with ) and the analytical expression given by eqn (S18). 
(a) , (b) . 20nm. Vertical bars indicate the positions of the ligands. 

os 0s →

p 10rκ = p 0.1rκ = pr =
 
III. Examples of statistical distribution of site-to-site distances in the soft particle limit for uniform 

and non-uniform site distributions. 

 

 4

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013



Figure S3. Statistical distribution of the site-to-site distance in the soft particle limit p0.01a r=  ( s 70N = ). 

(a) Uniform distribution, , (b) Non-uniform distribution, p 20nmr = p 20nmr = , (c) uniform distribution, 

. Uniform and non-uniform site distributions correspond here to the density probability functions p 10nmr =

( ), 1/x z πΦ =  and ( ) ( )2
2 2, 6 1 /x z x z πΦ = − + , respectively. For each case, we give the 

corresponding spatial distribution of ligands within the porous particle. 
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