Plasmon-Enhanced Water Splitting on TiO₂-Passivated GaP Photocatalysts

Jing Qiu^a, Guangtong Zeng^b, Prathamesh Pavaskar^c, Zhen Li^c, and Stephen B. Cronin^{bc*} ^aDepartment of Materials Science, University of Southern California, Los Angeles, California 90089, USA ^bDepartment of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA ^cDepartment of Chemistry, University of Southern California, Los Angeles, California 90089, USA

Supporting Information

1. Distinguish the plasmonic effect from the co-catalyst effect of Au

Noble metals, such as Pt, Au, and Ru, serve as electron-trapping co-catalysts to facilitate charge separation and enhance chemical reactions. To distinguish the plasmonic effect from the co-catalyst effect, we replace Au with Pt. As shown in Figure S1, the co-catalyst effect is not significant when the applied voltage is not more negative than -1.0V vs. Ref (Ag/AgCl). Therefore, we claim the Au as a co-catalyst is not the determining factor in our case.

Figure S1. Photocurrent plotted as a function of voltage for GaP photocatalysts with Pt nanoparticles with and without TiO_2 under $1W/cm^2 532nm$ illumination in a 0.5M Na₂SO₄ solution.

2. SEM images

Figure S2. SEM image of bare GaP (a) and TiO_2 passivated GaP (b) after 12 hour reaction.