On the gas-phase reaction between SO_2 and $O_2^-(H_2O)_n$ clusters, n = 0 - 3 - an ab initio study

N. Tsona¹, N. Bork^{1,2} and H. Vehkamäki¹

Department of Physics, University of Helsinki, Helsinki, 00014, Finland
 Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark

Correspondence to: nicolai.bork@helsinki.fi

Electronic Supplementary Information

Table S1: Gibbs free energy (ΔG at 298.15 K) and enthalpy (ΔH) (in kcal/mol) of the most stable configurations relative to separated reactants. The dehydrated reaction catalysed by SO₂ is shown at the end of the table. All Gibbs free energies are shown in Figure 2 in the main article. "TS" is shorthand for a transition state structure.

\overline{n}	$O_2SO_2^-(H_2O)_n$		$\mathrm{O_2} + \mathrm{SO_2^-}(\mathrm{H_2O})_\mathrm{n}$		TS		$\mathrm{SO}_4^-(\mathrm{H}_2\mathrm{O})_\mathrm{n}$	
	ΔG	ΔH	ΔG	ΔH	ΔG	ΔH	ΔG	ΔH
0	-31.22	-40.02	-16.33	-15.61	-0.86	-11.45	-85.87	-96.78
1	-21.46	-31.67	-10.46	-10.82	4.75	-7.81	-75.90	-87.82
2	-15.34	-26.06	-4.99	-6.15	8.47	-4.06	-70.18	-81.75
3	-11.83	-25.03	-3.89	-5.79	13.79	-0.26	-67.23	-77.47
$O_2 SO_2^-$	$+SO_2$	SO_2SO_2	$O_2 O_2^{-}$	TS_{co}	$_{it}$	SO_4^-	$+ SO_2$	
ΔG	ΔH	ΔG	ΔH	ΔG	ΔH	ΔG	ΔH	
-31.22	-40.02	-36.96	-54.34	-15.75	-38.48	-67.23	-77.47	
								-

Figure S1: Ground state structures of $SO_4^-(H_2O)_n$, n= 0–3. Colour coding: yellow = sulphur, red = oxygen, and white = hydrogen

Figure S2: Ground state structures of $SO_2^-(H_2O)_n$, n= 0–3, formed when O_2 evaporates from $O_2SO_2^-(H_2O)_n$. Colour coding: yellow = sulphur, red = oxygen, and white = hydrogen

Table S2: Evaporation rate constant of $O_2SO_2^-(H_2O)_n$ to $SO_2^-(H_2O)_n$ and $O_2^-(k_{evap})$. Isomerization rate constant of $O_2SO_2^-(H_2O)_n$ to $SO_4^-(H_2O)_n$, k_{isom} . The fraction of reactive collisions, r_{ox}/Z_{coll} . The model is presented in detail in Bork et al, Atmos. Chem. Phys., 12, 3639-3652, 2012.

		• / /	/
n	$k_{evap}(s^{-1})$	$\mathbf{k}_{isom} \; (\mathbf{s}^{-1})$	r_{isom}/Z_{coll}
0	1.79×10^{-1}	5.83×10^{-11}	3.26×10^{-10}
1	$1.25{ imes}10^2$	1.88×10^{-8}	1.51×10^{-10}
2	$3.61{ imes}10^2$	7.84×10^{-6}	2.17×10^{-8}
3	$2.09{ imes}10^4$	7.44×10^{-7}	$3.56{ imes}10^{-11}$

Table S3: Energy (in kcal/mol) of the decomposition of $O_2SO_2^-(H_2O)_n$ into O_2 and $SO_2^-(H_2O)_n$.

n	ΔG	ΔH
0	14.89	24.41
1	11.00	20.85
2	10.35	19.91
3	7.94	19.24

Table S4: Energy (in kcal/mol) of the growth of $O_2SO_2^-(H_2O)_n$ and $SO_2^-(H_2O)_n$ by H_2O condensation.

	$O_2 SO_2$	$_{2}^{-}(\mathrm{H}_{2}\mathrm{O})_{\mathrm{n}}$	$\mathrm{SO_2^-(H_2O)_n}$			
n	ΔG	ΔH	ΔG	ΔH		
0	-2.90	-12.00	-6.80	-15.57		
1	-1.60	-10.72	-2.25	-11.66		
2	-0.17	-12.38	-2.58	-13.04		

n = 0	n = 1	n=2	n = 3	n = 4	n = 5
50	32	34	36	36	23
193	56	43	56	58	29
241	99	54	72	70	43
299	166	76	75	76	57
478	200	132	108	79	70
571	266	181	148	89	75
1072	319	193	160	109	75
1168	325	208	181	131	89
1275	386	263	198	164	110
	496	308	207	194	118
	583	332	209	207	132
	674	391	262	222	151
	1061	456	318	228	193
	1142	492	461	245	207
	1271	553	470	270	211
	1695	580	474	322	226
	3735	688	526	405	230
	3761	763	557	450	273
		1061	584	464	291
		1149	584	487	325
		1267	651	522	388
		1675	732	551	404
		1696	750	587	447
		3530	957	616	474
		3691	1067	638	476
		3738	1149	686	529
		3863	1268	732	562
			1670	798	589
			1677	805	622
			1700	991	636
			3546	1063	693
			3598	1140	755
			3618	1266	782
			3669	1688	826
			3693	1692	838
			3777	1696	996
				1705	1062
				3427	1136
				3529	1263
				3578	1662
				3620	1683
				3640	1687
				3724	1699
				3761	1712
				3792	3451
					3512
					3529
					3553
					3595
					3613
					3714
					3763
					3786
					3907

Table S5: Frequencies (in cm^{-1}) for the most stable $O_2SO_2^-(H_2O)_n$ clusters, shown in Figure 1 in the main article.

Table S6: Frequen	cies (in cm_{-1}^{-1}) for t	he most	stable ti	ransition	states, s	shown in	Figure 3 in the main article.
	\overline{n}	u = 0	n = 1	n=2	n = 3	n = 4	n = 5	
		301i	172i	217i	237i	148i	83i	
		154	61	21	18	37	22	
		364	74	50	25	47	29	
		409	176	61	43	65	52	
		467	280	76	47	70	54	
		791 040	326	147	69 79	82	68	
	1	840 1010	373	113	(2 129	$105 \\ 117$	81	
	1	1019	419 471	$208 \\ 277$	152	117	90 106	
	L	1110	471 487	211 301	$141 \\ 172$	$143 \\ 177$	110	
			804	321	253	194	132	
			858	373	$\frac{260}{261}$	215	$102 \\ 142$	
			930	422	275	$\frac{240}{242}$	176	
			1028	462	288	327	177	
			1133	483	303	370	210	
			1700	568	308	378	219	
			3214	781	381	415	264	
			3877	852	423	437	314	
				911	453	462	374	
				1021	477	486	389	
				1116	523	498	402	
				1672	540	526	425	
				1695	779	563	456	
				3253	852	587	478	
				3767	889 1015	638 656	485 502	
				2009 2004	$1010 \\ 1120$	000 816	552	
				3004	1660	861 861	502 508	
					1670	867	638	
					1690	976	697	
					3295	1027	772	
					3772	1078	780	
					3787	1130	809	
					3850	1661	830	
					3866	1674	869	
					3889	1684	904	
						1706	1030	
						2993	1042	
						3424	1137	
						3521	1662	
						3600	1677	
						3722	1693	
						3782 2705	$1099 \\ 1720$	
						3790 3874	1720 3243	
						0014	3352	
							3531	
							3540	
							3614	
							3695	
							3720	
							3760	
							3815	
							3908	

n = 0	n = 1	n=2	n = 3	n = 4	n = 5
332	37	34	23	46	25
360	77	37	48	60	30
373	172	62	54	69	49
505	305	127	81	74	63
517	322	169	95	86	71
676	337	179	134	107	76
906	356	248	181	118	87
1131	398	298	185	150	90
1203	511	343	193	195	112
	521	360	234	219	122
	651	405	332	230	148
	680	461	355	242	177
	909	510	376	322	213
	1128	529	392	337	220
	120	556	425	400	$220 \\ 242$
	1688	665	420	400	276
	3672	669	444	440	322
	38/15	700	518	472	340
	0040	006	525	487	306
		1125	552	511	307
		100	660	521	420
		1660	009 711	576	420
		1609	761	570 610	442
		1095	701 01 <i>C</i>	019	470
		3087 2000	010	054	495
		3090	921	008	513
		3730	1154	090 705	530 E 95
		3849	11/0	705	582 COT
			1659	(88	625 625
			1681	804	632
			1691	924	678
			3518	992	699
			3641	1136	719
			3683	1189	778
			3712	1684	820
			3807	1692	840
			3895	1694	926
				1703	999
				3462	1138
				3520	1185
				3557	1660
				3588	1684
				3688	1687
				3740	1698
				3770	1702
				3790	3433
					3497
					3537
					3555
					3607
					3645
					3727
					3774
					3787
					3909

Table S7: Frequencies (in cm^{-1}) for the most stable $SO_4^-(H_2O)_n$ clusters