Electronic Supplementary Information

Scheme S1. Preparation scheme of the samples under study: TT = Thermal treatment, HT = Hydrothermal treatment, and * = Sample contains an eluted variety.

Fig. S1 FT-IR spectra of pyridine TPD at 200°C for a) the O-H stretch region and b) the N-H stretch region of the following samples: $\blacksquare = [Z], \blacksquare$ dashed = [Z]TT, $\blacksquare = NA[Z]$, and \blacksquare dashed = NA[Z]TT $\blacksquare = PA[Z], \blacksquare = PA[Z], \blacksquare = PB[Z], \blacksquare = PB[Z], \blacksquare = PB[Z] \blacksquare$ dashed = PA[Z]TT, \blacksquare dashed = PA[Z]TT, \blacksquare dashed = PB[Z]TT, \blacksquare dashed = PB[Z]TT, and \blacksquare dashed dashed = PB[Z]TT, and \blacksquare dashed dashed dashed = PB[Z]TT, and \blacksquare dashed = PB[Z]TT, and \blacksquare dashed da

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2013

Supplementary Information

Fig. S2 Relation between SiOHAl groups, TFAl species and Brønsted acid sites. Values of SiOHAl correspond to the area of the deconvoluted 3600 cm^{-1} band of each sample, relative to the area of the deconvoluted 3600 cm^{-1} band of [Z]. Details of the deconvolution procedure can be found in Table S2. Values for TFAl correspond to the relative contribution of the deconvoluted 55 ppm peaks of each sample relative to the relative contribution of the deconvoluted 55 ppm peaks of each sample relative to the relative contribution of the deconvoluted 55 ppm peaks of each sample relative to the relative contribution of the deconvoluted 55 ppm peaks of each sample relative to the baseline corrected area of the 1540 cm⁻¹ pyridinium ion N-H stretch band of each sample, relative to area of the 1540 cm⁻¹ band for sample [Z] at 200 °C.

Table S1 . Relative amounts of SiOHAl, TFAl and Pyridinium ion							
Sample	SiOHAl (%) ^a	TFAl (%)	Pyridimium ions (%) ^a				
[Z]	100	100	100				
[Z] TT	57	57	51				
NA[Z]	105	100	103				
NA[Z] TT	53	53	55				
PA[Z]	68	70	65				
PA[Z] e	103	100	93				
PA[Z] TT	26	33	30				
PA[Z] TT	39	39	43				
e PB[Z]	90	101	104				
PB[Z] e	123	112	113				
PB[Z] TT	24	33	38				
PB[Z] TT e	36	41	42				
[a] Relative to sample [Z].							

PCCP

Table S2. Parame	eters used for the deconvolution of	the FT-IR spectra.		
Type 0 Quadratic	Center	Height -	FWHM	Туре
1 Lorentzian	$\begin{array}{c} 3603^a, 3603^b, 3605^c, 3603^d, \\ 3605^c, 3603^f, 3602^g, 3602^h, \\ 3603^i, 3603^j, 3604^k, 3604^l \end{array}$	$\begin{array}{c} 0.25^{a}, 0.17^{b}, 0.32^{c}, 0.19^{d}, \\ 0.20^{e}, 0.37^{f}, 0.06^{g}, 0.13^{h}, \\ 0.19^{i}, 0.55^{j}, 0.05^{k}, 0.09^{l} \end{array}$	$\begin{array}{c} 38.14^{a}, 43.70^{b}, 37.62^{c}, 44.43^{d}, \\ 44.36^{e}, 37.79^{f}, 41.31^{g}, 46.70^{h}, \\ 34.76^{i}, 34.45^{i}, 43.21^{k}, 47.40^{l} \end{array}$	Si-OH-Al
2 Lorentzian	3718 ^a , 3724 ^b , 3718 ^c , 3723 ^d , 3719 ^e , 3718 ^f , 3720 ^g , 3720 ^h , 0 ⁱ , 3726 ^j , 3718 ^k , 3719 ^l	$0.03^{a}, 0.03^{b}, 0.05^{c}, 0.05^{d}, 0.04^{c}, 0.05^{f}, 0.03^{g}, 0.06^{h}, 0.00^{i}, 0.03^{j}, 0.03^{k}, 0.04^{l}$	35.03 ^a , 24.13 ^b , 38.42 ^c , 25.20 ^d , 20.39 ^e , 36.61 ^f , 31.24 ^g , 33.45 ^h , 0.00 ⁱ , 16.75 ^j , 27.44 ^k , 27.38 ⁱ	Si-OH (internal)
3 Lorentzian	3740 ^a , 3741 ^b , 3740 ^c , 3741 ^d , 3737 ^e , 3739 ^f , 3741 ^g , 3740 ^h , 0 ⁱ , 3740 ^j , 3741 ^k , 3740 ^l	$0.04^{a}, 0.06^{b}, 0.06^{c}, 0.09^{d}, 0.02^{c}, 0.05^{f}, 0.03^{g}, 0.05^{h}, 0.00^{i}, 0.07^{j}, 0.03^{k}, 0.03^{l}$	9.65 ^a , 8.57 ^b , 9.45 ^c , 9.41 ^d , 8.25 ^e , 10.34 ^f , 7.51 ^g , 8.66 ^h , 0.00 ⁱ , 8.64 ^j , 7.04 ^k , 8.25 ^l	Si-OH (external)
4 Lorentzian	0 ^a , 3658 ^b , 0 ^c , 3658 ^d , 3685 ^e , 0 ^{fe} , 3653 ^g , 3659 ^h , 0 ⁱ , 0 ^j , 3656 ^k , 3659 ^l	$0.00^{a}, 0.07^{b}, 0.00^{c}, 0.10^{d}, 0.02^{e}, 0.00^{f}, 0.03^{g}, 0.06^{h}, 0.00^{i}, 0.00^{j}, 0.04^{k}, 0.04^{l}$	$0.00^{a}, 32.40^{b}, 0.00^{c}, 35.53^{d}, 38.63^{c}, 0.00^{f}, 78.30^{g}, 64.23^{h}, 0.00^{i}, 0.00^{j}, 62.71^{k}, 54.72^{l}$	Al-OH
5 Lorentzian	3355 ^a , 3355 ^b , 3355 ^c , 3355 ^d , 3355 ^c , 3355 ^t , 3355 ^s , 3355 ^h , 3355 ⁱ , 3355 ⁱ , 3355 ^k , 3355 ^l ,	$\begin{array}{c} 0.05^{a}, 0.05^{b}, 0.07^{c}, 0.06^{d}, \\ 0.07^{e}, 0.07^{f}, 0.03^{a}, 0.07^{h}, \\ 0.04^{i}, 0.09^{j}, 0.02^{k}, 0.03^{l} \end{array}$	436.85 ^a , 436.85 ^b , 436.85 ^c , 436.85 ^d , 436.85 ^c , 436.85 ^f , 436.85 ^g , 436.85 ^h , 436.85 ^f , 436.85 ^j , 436.85 ^k , 436.85 ^l	unknown
6 Lorentzian	3544°, 3544 ^b , 3544 ^c , 3544 ^d , 3544°, 3544 ^f , 3544 ^g , 3544 ^h , 3544 ⁱ , 3544 ^j , 3544 ^k , 3544 ^l	$\begin{array}{c} 0.03^{a}, 0.03^{b}, 0.04^{c}, 0.04^{d}, \\ 0.05^{c}, 0.05^{f}, 0.04^{g}, 0.06^{h}, \\ 0.02^{i}, 0.04^{i}, 0.03^{k}, 0.04^{l} \end{array}$	153.26 ^a , 153.26 ^b , 153.26 ^c , 153.26 ^d , 153.26 ^c , 153.26 ^c , 153.26 ^g , 153.26 ^h , 153.26 ⁱ , 153.26 ^j , 153.26 ^k , 153.26 ⁱ , 153.26 ^j , 153.26 ^k , 153.26 ⁱ	unknown

[a] [Z] [b] [Z]TT [c] NA[Z] [d] NA[Z]TT [e] PA[Z] [f] PA[Z]e [g] PA[Z]TT [h] PA[Z]TT e [i] PN[Z] [j] PN[Z]e [k] PN[Z]TT [l] PN[Z]TT e.

Table S3. Isotropic chemical shifts and second-order quadrupolar effect parameters (SOQE) estimated from the analysis of ²⁷ Al MQ MAS spectra.														
Samp	ole	[Z]TT	PA	.[Z]	PA	[Z] e	PA[2	Z]TT	PA[Z	Z]TT e	PB	[Z]	PB[Z]TT e
	$\begin{array}{c} \delta_{iso} \\ (ppm) \end{array}$	SOQE (MHz)	$\begin{matrix} \delta_{iso} \\ (ppm) \end{matrix}$	SOQE (MHz)	$\begin{matrix} \delta_{iso} \\ (ppm) \end{matrix}$	SOQE (MHz)	$\begin{array}{c} \delta_{iso} \\ (ppm) \end{array}$	SOQE (MHz)	$\begin{matrix} \delta_{iso} \\ (ppm) \end{matrix}$	SOQE (MHz)	$\begin{array}{c} \delta_{iso} \\ (ppm) \end{array}$	SOQE (MHz)	$\begin{array}{c} \delta_{iso} \\ (ppm) \end{array}$	SOQE (MHz)
1	56.6	2.6	56.6	2.6	58.7	4.6	56.6	3.1	55.8	2.1	56.8	2.6	56.5	2.8
2	1.27	2.8	0.9	2.5	3.1	4.7	1.1	3.0	0.3	2.4	-	-	0.9	3.6
3	-	-	51.7	6.6	58.9	7.7	51.7	6.5	51.6	6.6	55.8	6.7	52.0	6.7
4	-	-	-2.6	2.6	-0.3	5.1	-2.45	3.2	-3.0	2.7	-4.2	3.6	-2.1	3.8
5	-	-	-5.1	3.4	-2.9	4.8	-5.12	3.4	-5.1	2.9	-7.1	3.6	-5.0	3.8
6	-	-	-9.1	3.6	-	-	-9.0	3.6	-9.7	2.9	-10	3.7	-8.9	3.6
7	58.5	6.5	-	-	-	-	-	-	-	-	-	-	-	-

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Supplementary Information

Fig. S3 Examples of ²⁷Al 1D MAS NMR spectra and corresponding deconvolution for the following samples: a) [Z], b) [Z]TT, c) PA[Z], and d) PA[Z]TT.

Table S4. ²⁷ Al	1D MAS NMR	contributions	of deconvoluted	l resonances.		
Sample	TFAl (%)	TFAl _{dis} (%)	Al(V) (%)	OFAl (%)	Al(VI) (%)	Al(IV) ^a /Al(I V) ^b
[Z]	85	-	-	15	-	5.5
[Z] TT	49	22	1	3	9	5.8
NA[Z]	85	-	-	15	-	5.6
NA[Z] TT	46	22	2	4	10	4.8
PA[Z]	59	8	-	2	33	2.0
PA[Z] e	84	-	-	7	9	16
PA[Z] TT	28	38	4	2	29	2.2
PA[Z] TT e	33	29	-	7	13	3.1
PB[Z]	85	1	-	-	14	6.2
PB[Z] e	95	-	-	-	5	19.0
PB[Z] TT	28	39	4	2	28	2.2
PB[Z] TT e	35	29	-	4	17	3.0

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is C The Owner Societies 2013

Supplementary Information

Fig. S7 Aluminium K-edge XANES spectra of the following samples: $\blacksquare = [Z]$, \blacksquare dashed = [Z]TT. The broadening of the post-edge feature marked by the arrow indicates the formation of partially dislodged aluminium species.

PCCP

Table S5. ICP results for phosphorus-containing samples.								
Sampl e	P - conten t $(ut \theta)$	Remaining ^{[a}] (%)	Sample	P- content (wt%)	Remaining ^a (%)			
PA[Z]	(wt%) 2.26	-	PB[Z]	1.01	43			
PA[Z]	0.56	25	e PB[Z] TT	2.30	98			
e PA[Z] TT	2.18	96	PB[Z]	1.73	75			
PA[Z] TT e	1.59	73	TT[Z] PA	2.19	-			
PN[Z]	2.35	-	TT[Z] PA e	0.82	37			

[a] Relative to the parent material of the sample.

Fig. S8 H_3PO_4 (85%) was calcined in static air at 600°C for 5 h. Afterwards 100 mg of the newly formed white powder was suspended in 200 ml hot water (80°C) and stirred for 2 h. The solution was clearly turbid and a high amount of sediment was observed. Prolonged stirring (4 h) and sonication did not proof effective in further solving the condensed phosphates.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Supplementary Information

