Supporting Information

With the Same Clar Formulas, Do the Two-dimensional Sandwich Nanostructures X-Cr-X (X=C₄H, NC₃ and BC₃) Behave Similarly?

Xin Tan¹, Peng Jin² and Zhongfang Chen*,1

¹ Department of Chemistry, Institute for Functional Nanomaterials, University of Puerto Rico,

Rio Piedras Campus, San Juan 00931, Puerto Rico

² School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130,

P. R. China

^{*} Corresponding authors: <u>zhongfangchen@gmail.com</u> (Z.C.)

Figure S1: Calculated electronic band structure of isolated 2D (a) C_4H , (b) NC_3 and (c) BC_3 monolayers using PBE (black lines) and hybrid HSE06 (blue lines) functionals.

C₄H-Cr-C₄H in AA stacking-H1 (VBM)

C₄H-Cr-C₄H in AA stacking-H1 (CBM)

NC₃-Cr-NC₃ in AA stacking-H1 (VBM)

NC₃-Cr-NC₃ in AA stacking-H1 (CBM)

Figure S2: The electron density isosurfaces for VBM and CBM of the NM phase of AA stacking-H1 (a) C_4H -Cr- C_4H and (b) NC₃-Cr-NC₃. The isovalue is 0.001 au.