1 Atmospheric aqueous phase radical chemistry of the isoprene

2 oxidation products methacrolein, methyl vinyl ketone, methacrylic

3 acid and acrylic acid – kinetics and product studies

4 Luisa Schöne⁽¹⁾, Janine Schindelka⁽¹⁾, Edyta Szeremeta⁽²⁾, Thomas Schaefer⁽¹⁾, Dirk
5 Hoffmann⁽¹⁾, Krzysztof J. Rudzinski⁽²⁾, Rafal Szmigielski⁽²⁾ and Hartmut Herrmann^(1,*)

6 ⁽¹⁾ Leibniz-Institute for Tropospheric Research, Permoserstraße 15, 04318 Leipzig, Germany

7 (2) Institute of Physical Chemistry of the Polish Academy of Sciences, Laboratory of

8 Environmental Chemistry, 01-224 Warsaw, Poland

9 * Corresponding author, herrmann@tropos.de

10 Submitted to PCCP

11

Electronic Supplemental Material (ESM)

1 Basic assumptions of the reversed-rates method

2 The chain-radical mechanism of the autoxidation of S(IV) catalysed by Fe(III) and inhibited
3 by an organic scavenger of sulfate radical anions used by the reversed-rates method contains
4 the following reactions:

5 Chain initiation

(A1	1)
	(\mathbf{A})

7 Chain propagation

8 SO_3 + $O_2 \rightarrow SO_5$ -	(A2)
-------------------------------------	------

9
$$SO_5^{-} + HSO_3^{-} \rightarrow HSO_5^{-} + SO_3^{-}$$
 (A3)

$$10 \quad \mathrm{SO}_5^{\bullet-} + \mathrm{HSO}_3^- \to \mathrm{SO}_4^{2-} + \mathrm{SO}_4^{\bullet-} + \mathrm{H}^+ \tag{A4}$$

$$11 \quad \mathrm{SO}_4^{-} + \mathrm{HSO}_3^{-} \to \mathrm{SO}_4^{2-} + \mathrm{SO}_3^{-} + \mathrm{H}^+ \tag{A5}$$

$$12 \quad \mathrm{SO}_5^{\bullet} + \mathrm{SO}_5^{\bullet} \to \mathrm{SO}_4^{\bullet} + \mathrm{SO}_4^{\bullet} + \mathrm{O}_2 \tag{A6}$$

13 Formation of sulfate

14
$$\text{HSO}_5^- + \text{HSO}_3^- \rightarrow \text{SO}_4^{2-} + \text{SO}_4^{2-} + 2 \text{ H}^+$$
 (A7)

15 Regeneration of the initiator

16
$$\operatorname{SO}_5^{-}$$
 + $\operatorname{Fe}(\operatorname{II}) \to \operatorname{SO}_5^{2-}$ + $\operatorname{Fe}(\operatorname{III})$ (A8)

17
$$\operatorname{SO}_5^{-} + \operatorname{Fe}(\operatorname{II}) \to \operatorname{SO}_4^{2-} + \operatorname{Fe}(\operatorname{III}) (+ \operatorname{OH}^-)$$
 (A9)

18
$$SO_4^{\bullet-} + Fe(II) \rightarrow SO_4^{2-} + Fe(III)$$
 (A10)

19 Termination

$20 \quad \mathrm{SO}_3^{\bullet-} + \, \mathrm{SO}_3^{\bullet-} \to \, \mathrm{S}_2^{\bullet}\mathrm{O}_6^{2-} \tag{A11}$

$$21 \quad \mathrm{SO}_4^{-} + \, \mathrm{SO}_4^{-} \to \, \mathrm{S}_2 \mathrm{O}_8^{2-} \tag{A12}$$

$$22 \quad \mathrm{SO}_5 + \mathrm{SO}_5 \to \mathrm{S}_2 \mathrm{O}_8^{2-} + \mathrm{O}_2 \tag{A13}$$

23 Inhibition

24 Organic + $SO_4 \rightarrow Products$ (A14)

25 Speciation and hydrolytic equilibria

26
$$H_2SO_3 \Rightarrow H^+ + HSO_3^-$$
 (A15)

1	$\mathrm{HSO}_{3^{-}} \rightleftharpoons \mathrm{H}^{+} + \mathrm{SO}_{3^{2^{-}}} \tag{A}$.16)
2	$S_2O_5^{2-} \Rightarrow HSO_3^- + HSO_3^-$ (A	.17)
3	$HSO_4^- \Rightarrow H^+ + SO_4^{2-}$ (A	.18)
4	$Fe^{2+} + SO_4^{2-} \Rightarrow Fe(II)SO_4$ (A)	.19)
5	$Fe^{3+} + SO_4^{2-} \Rightarrow Fe(III)SO_4^+$ (A)	.20)
6	$\operatorname{Fe}^{3+} + 2\operatorname{SO}_4^{2-} \Rightarrow \operatorname{Fe}(\operatorname{III})(\operatorname{SO}_4)^{2-}$ (A)	.21)
7	$Fe^{3+} + H_2O \Rightarrow Fe(III)OH^{2+} + H^+ $ (A)	.22)
8	$Fe^{3+} + 2 H_2O \Rightarrow Fe(III)(OH)^{2+} + 2H^+$ (A)	.23)
9	$[Fe(II)]_{total}/[Fe(III)]_{total} = 3 $ (A)	.24)
10	The assumptions underlying the pseudo-stationary analysis of the autoxidation of S((IV)
11	catalysed by Fe(III) and inhibited by organic scavenger of sulphate radical anions are (i)	the
12	rate of autoxidation is controlled by the reaction of bisulfite ions with peroxymonosul	fate
13	radical anions (A7), (ii) chain termination is dominated by reactions of ferrous ions v	vith
14	peroxymonosulfate radicals (A8) and (A9), as well as by reaction of sulphate radical ani	ions
15	with an organic inhibitor (A14); (iii) the chain initiation occurs by the reaction of ferric i	ions

16 with bisulfite ions (A1); (iv) rate of chain termination (by dominating reactions) is equal to 17 the rate of chain initiation.

4 Fig. A0.
 5 Temporal profiles of the reaction of acrylic acid (pH 1) with NO₃ (top), SO₄⁻ (middle) and OH radicals (bottom). Grey areas correspond to error range resulting from the standard deviation of eight signals.

Reactant	T / K	ОН	NO ₃	SO ₄ - (LFP)	SO ₄ -(KR)		
methacrolein	278	$(5.7 \pm 0.4) \cdot 10^9$	$(3.2 \pm 1.1) \cdot 10^7$	$(6.8 \pm 4.8) \cdot 10^7$			
	288	$(7.4 \pm 0.3) \cdot 10^9$	$(3.5 \pm 0.8) \cdot 10^7$	$(7.5 \pm 2.7) \cdot 10^7$	$(1.8 \pm 1.2) \cdot 10^7$		
	298	$(9.4 \pm 0.7) \cdot 10^9$	$(4.0 \pm 1.0) \cdot 10^7$	$(9.9 \pm 4.9) \cdot 10^7$	$(5.5 \pm 1.4) \cdot 10^7$		
	308	$(9.5 \pm 0.4) \cdot 10^9$	$(4.2 \pm 1.4) \cdot 10^7$	$(7.2 \pm 2.0) \cdot 10^7$	$(9.4 \pm 1.9) \cdot 10^7$		
	318	$(1.0 \pm 0.5) \cdot 10^{10}$	$(1.5 \pm 1.5) \cdot 10^7$	$(5.4 \pm 2.3) \cdot 10^7$			
methyl vinyl keton	e 278	$(5.1 \pm 0.6) \cdot 10^9$	$(7.7 \pm 2.2) \cdot 10^{6}$	$(8.1 \pm 1.6) \cdot 10^7$			
	288	$(6.3 \pm 0.3) \cdot 10^9$	$(1.0 \pm 0.4) \cdot 10^7$	$(5.3 \pm 0.8) \cdot 10^7$	$(1.2 \pm 0.4) \cdot 10^8$		
	298	$(7.3 \pm 0.5) \cdot 10^9$	$(9.7 \pm 3.4) \cdot 10^{6}$	$(1.0 \pm 0.2) \cdot 10^8$	$(8.7 \pm 2.2) \cdot 10^7$		
	308	$(8.5 \pm 0.6) \cdot 10^9$	$(1.0 \pm 0.2) \cdot 10^7$	$(9.0 \pm 0.6) \cdot 10^7$	$(8.6 \pm 2.6) \cdot 10^7$		
	313	$(7.0 \pm 0.6) \cdot 10^9$					
	318	$(7.9 \pm 0.4) \cdot 10^9$	$(1.4 \pm 0.5) \cdot 10^7$	$(8.7 \pm 2.6) \cdot 10^7$			
methacrylic acid	278	$(7.9 \pm 2.0) \cdot 10^9$	$(9.3 \pm 4.2) \cdot 10^7$	$(1.1 \pm 0.3) \cdot 10^8$			
	288	$(9.0 \pm 1.1) \cdot 10^9$	$(1.1 \pm 2.0) \cdot 10^8$	$(1.4 \pm 1.1) \cdot 10^8$			
	293		$(1.1 \pm 0.4) \cdot 10^8$				
	298	$(1.1 \pm 0.1) \cdot 10^{10}$	$(9.2 \pm 1.6) \cdot 10^7$	$(2.5 \pm 1.2) \cdot 10^8$			
	308	$(1.2 \pm 0.1) \cdot 10^{10}$	$(8.3 \pm 5.5) \cdot 10^7$	$(1.7 \pm 1.1) \cdot 10^8$			
	318	$(1.5 \pm 0.1) \cdot 10^{10}$		$(2.0 \pm 0.4) \cdot 10^8$			
methacrylate	278	$(7.3 \pm 0.4) \cdot 10^9$	$(3.8 \pm 0.5) \cdot 10^8$	$(1.9 \pm 0.9) \cdot 10^8$			
	288	$(9.4 \pm 0.4) \cdot 10^9$	$(3.2 \pm 0.5) \cdot 10^8$	$(2.9 \pm 1.3) \cdot 10^8$			
	298	$(1.1 \pm 0.1) \cdot 10^{10}$	$(1.7 \pm 1.2) \cdot 10^8$	$(3.5 \pm 1.1) \cdot 10^8$			
	303			$(2.3 \pm 0.7) \cdot 10^8$			
	308	$(1.4 \pm 0.2) \cdot 10^{10}$	$(1.2 \pm 0.4) \cdot 10^{8}$	$(2.2 \pm 1.1) \cdot 10^8$			
	318	$(1.4 \pm 0.3) \cdot 10^{10}$	$(0.8 \pm 1.9) \cdot 10^7$	$(3.5 \pm 1.6) \cdot 10^8$			
acrylic acid	278	$(4.2 \pm 0.5) \cdot 10^9$	$(2.9 \pm 0.9) \cdot 10^{6}$	$(8.6 \pm 1.1) \cdot 10^7$			
	288	$(4.7 \pm 0.3) \cdot 10^9$	$(4.3 \pm 0.5) \cdot 10^{6}$	$(9.0 \pm 3.3) \cdot 10^7$			
	298	$(5.1 \pm 0.8) \cdot 10^9$	$(6.9 \pm 1.0) \cdot 10^{6}$	$(9.5 \pm 0.8) \cdot 10^7$			
	303			$(9.7 \pm 2.5) \cdot 10^7$			
	308	$(5.7 \pm 0.7) \cdot 10^9$	$(1.0 \pm 0.4) \cdot 10^7$	$(8.4 \pm 2.0) \cdot 10^7$			
	318	$(6.1 \pm 0.7) \cdot 10^9$	$(2.3 \pm 0.3) \cdot 10^7$	$(1.0 \pm 0.2) \cdot 10^8$			
acrylate	278	$(5.4 \pm 1.0) \cdot 10^9$	$(1.9 \pm 0.3) \cdot 10^7$	$(9.3 \pm 0.9) \cdot 10^7$			
	288	$(5.5 \pm 0.5) \cdot 10^9$	$(3.0 \pm 0.7) \cdot 10^7$	$(9.4 \pm 2.2) \cdot 10^7$			
	298	$(5.9 \pm 0.9) \cdot 10^9$	$(4.4 \pm 0.6) \cdot 10^7$	$(9.9 \pm 2.0) \cdot 10^7$			
	308	$(5.9 \pm 1.2) \cdot 10^9$	$(3.9 \pm 1.6) \cdot 10^7$	$(8.9 \pm 2.3) \cdot 10^7$			
	318	$(6.2 \pm 0.4) \cdot 10^9$	$(5.3 \pm 1.6) \cdot 10^7$	$(6.4 \pm 1.7) \cdot 10^7$			
Table A1. T	e A1. Temperature dependent reaction rate constants for the conducted kinetic measuremen						

able A1. Temperature dependent reaction rate constants for the conducted kinetic measurements. Gray values were not used to calculate the activation parameters. LFP: Laser flash photolysis. RR: Reversed-rates method.

1 Calculation of activation parameters

2 The Arrhenius formula describes the temperature dependence of the rate constant k(T).
3 Plotting the natural logarithm of k over the invers temperature T, the preexponential factor A
4 and the activation energy E_A can be calculated.

5
$$k(T) = A \exp\left(\frac{-E_A}{RT}\right)$$
 (3)

6 For bimolecular reactions, the following applies:

$$7 \quad \Delta H^{\ddagger} = E_A - RT \tag{4}$$

$$8 \quad \Delta S^{\ddagger} = R \left(ln \ A - ln \ \frac{k_B T}{h} - 1 \right) \tag{5}$$

9 with ΔH^{\ddagger} and ΔS^{\ddagger} denoting the enthalpy and entropy of activation as well as 10 $k_{\rm B} = 1.381 \cdot 10^{23}$ J K⁻¹ and h = 6.626 \cdot 10^{-34} J s the Boltzmann and Planck constants, respectively. 11 According to the Gibbs-Helmholtz equation, Gibbs' free energy, enthalpy and entropy of 12 activation are linked by

$$13 \quad \Delta G^{\ddagger} = \Delta H^{\ddagger} - T \, \Delta S^{\ddagger} \tag{6}$$

- 14 From these equations, all activation parameters can be calculated.
- 15

2 Fig. A1. Arrhenius plot for the reaction of methacrolein with OH including literature data.

2 Fig. A2. Arrhenius plot for the reaction of methyl vinyl ketone with OH.

Fig. A3. Arrhenius plot for the reaction of methacrolein with SO₄. LFP: Laser flash photolysis. RR:
reversed-rates method.

Fig. A4. Arrhenius plot for the reaction of methyl vinyl ketone with SO₄-. LFP: Laser flash photolysis. RR:
 reversed-rates method.

2 Fig. A5. Arrhenius plot for the reactions of methacrylic and acrylic acid at pH 1 with SO₄⁻.

2 Fig. A6. Arrhenius plot for the reaction of methacrolein and methyl vinyl ketone with NO₃.

2 Fig. A7. Arrhenius plot for the reaction of acrylate and methacrylate at pH 8 with NO₃.

Fig. A8. Temperature dependent determination of second order rate constants for the reaction of acrylic acid + NO₃ at pH 1. Error bars for k_{1st} correspond to the standard deviation (1 σ) of the eightfold averaged absorption signals, including the student-t-factor for the 95 % confidence interval.

1 Errors on diffusion limits

2 The errors on diffusion limits can be calculated using the exact differential method starting 3 with the Tyn and Calus formula. According to Poling et al., (2000), the error of V_m is 4 $\Delta V_m = 2.8$ % whereas $\Delta \eta = 2$ % is the error of the tabulated values and $\Delta T = 0.1$ K, 5 respectively. The error on r (eq. 9), D (eq. 8) and, finally, the errors on k_{diff} (eq. 7) were 6 calculated according to the equations listed below. The resulting errors in k_{diff} are 4.6 %. It 7 has to be noted, that the exact differential method usually overestimates the experimental 8 errors.

9
$$\Delta r = \frac{1}{(4\pi N_A)^{1/8} (3V_m)^{2/8}} \Delta V_m$$
 (A25)

10
$$\Delta D = 4.44 \times 10^{-8} \frac{(XM)^{0.5} T}{(\eta V_m)^{1.6}} \Delta V_m + 7.4 \times 10^{-8} \frac{(XM)^{0.5}}{(\eta V_m)^{0.6}} \left(\Delta T + \frac{T}{\eta} \Delta \eta\right)$$
 (A26)

11
$$\Delta k_{diff} = 4 \times 10^3 \pi N_A \left[(r_{\text{radical}} + r_{\text{reactant}}) (\Delta D_{\text{radical}} + \Delta D_{\text{reactant}}) + (D_{\text{radical}} + D_{\text{reactant}}) (\Delta r_{\text{radical}} + \Delta r_{\text{reactant}}) \right]$$

12

(A27)