Supplementary Material for "The Pyrolysis of 2-Methylfuran: A Quantum Chemical, Statistical Rate Theory and Kinetic Modelling Study"

Kieran P. Somers¹, John M. Simmie¹, Wayne K. Metcalfe¹, and Henry J. Curran¹

¹Combustion Chemistry Centre, National University of Ireland, University Road, Galway, Ireland

December 31, 2013

Contents

1	Potential Energy Surfaces for α -Carbene mediated Unimolecular Decomposition	3
2	Potential Energy Surfaces for Hydrogen Atom Addition at C-3 and C-4.	3
3	Influence of $\langle \Delta E_d \rangle$ on RRKM/ME Derived $k(T, p)$ 3.1Unimolecular Decomposition of 2-Methlyfuran3.2Hydrogen Atom Addition at Carbon 2 of 2-Methylfuran	6 6 9
4	 Pressure Dependent Rate Constants from RRKM/ME Calculations 4.1 Chemkin-PRO Compatible PLOG Rate Constants	12 12 19
5	Comparison of High Pressure Limiting Rate Constants with Literature	27
6	Comparison of Mechanism with Literature Oxidation Experiments6.1Atmospheric Pressure Ignition Delay Times of 1% 2-Methylfuran/Argon Mixtures6.2Ignition Delay Times of 2-Methylfuran/O ₂ /Argon Mixtures at Elevated Pressures6.3Atmospheric Pressure Laminar Burning Velocities of 2-Methylfuran-Synthetic Air Mixtures6.4Speciation in Low-Pressure 2-Methylfuran/O ₂ /Ar Flames6.4.1 $\phi = 1.0$ 6.4.2 $\phi = 1.7$	29 30 34 35 35 45
7	Electronic Energies of Stationary Points	55
8	Geometries of Stationary Points	59

1 Potential Energy Surfaces for α -Carbene mediated Unimolecular Decomposition

Figure 1: Potential energy surface for the formation and decomposition of α -carbenes. CBS-QB3, *CBS-APNO* and **G3** Energies in kJ mol⁻¹ at 0 K relative to 2-methylfuran.

Figure 1 delineates the potential energy surfaces for the decomposition of 2-methylfuran through α -carbene intermediates. Based on CBS-QB3 calculations, a 2 \rightarrow 3 methyl shift to form a singlet α -carbene (**M2**) occurs with a transition state lying 346.3 kJ mol⁻¹ above the reactant in a reaction which is endothermic by 256.0 kJ mol⁻¹, in good agreement with values computed for the analagous 25DMF [1] and those of Davis for 2MF [2]. The carbene subsequently decomposes in a mildly exothermic (-16.2 kJ mol⁻¹) reaction forming methyl ketene (CH₃-CH=C=O) and acetylene (HC≡CH) with the transition structure lying 114.5 kJ mol⁻¹ above the carbene intermediate and 370.4 kJ mol⁻¹ above 2MF.

The formation of an α -carbene (M3) from a 5 \rightarrow 4 hydrogen transfer proceeds through a barrier of only 274.5 kJ mol⁻¹ based on a CBS-QB3 computation with a reaction enthalpy of 230 kJ mol⁻¹. Decomposition to CH₂=C=O and HC≡C−CH follows through a barrier 127.0 kJ mol⁻¹ above the carbene and 357.0 kJ mol⁻¹ above 2MF. The energetics of this multistep process are in excellent agreement with G3(MP2), CASPT2 and CBS-QB3 calculations carried out for the similar process in furan [3,4].**TS3** and **TS4** correspond to those for Diels-Alder type reactions and multi-reference effects may be of importance. T1 diagnostics were therefore computed and found to be 0.019 for **TS3** and 0.018 for **TS4**, thus indicating that single-reference methods used suffice. The computed decomposition rate constants for the α -carbenes (k_3 and k_4) are in excellent agreement as one might expect, given their similar decomposition mechanism and products.

Methyl ketene was identified in the low pressure flames of 25DMF, which is formed along with $HC \equiv C - CH$, in an effectively identical process to the above [1]. Based on the computed energetics and kinetics of this process however, its production from 2MF and 25DMF is insignificant.

2 Potential Energy Surfaces for Hydrogen Atom Addition at C-3 and C-4.

Figure 2 describes the potential energy surface for hydrogen atom addition at C-3 of 2MF. Despite the rate constant for addition at C-3 being competitive with addition at C-2, the addition forming **M28** is much less exothermic than that forming **M17** *via* H atom addition at C-2, with the latter capable of undergoing resonance stabilisation to delocalise the radical formed.

Figure 2: Potential energy surface for hydrogen atom addition at carbon 3 of 2-methylfuran. CBS-QB3, *CBS-APNO* and **G3** energies in kJ mol⁻¹ at 0 K relative to reactants.

In turn the ring opening reaction of **M28** through a barrier of 141.1 ± 0.9 kJ mol⁻¹ (**TS41**) is much less facile than those of **M17** (k_{26} and k_{30}). This is clearly a result of the vinylic nature of **M28**, with the process being endothermic by 70.9 ± 3.5 kJ mol⁻¹. The ring opening of **M17** is shown to be exothermic (-2.90 ± 1.3 kJ mol⁻¹), with the radical formed being allylic in nature.

Table 1: Arrhenius coefficients of high-pressure limiting rate constants for for reactions relevant to hydrogen atom addition at C-3 of 2-methylfuran. $k(s^{-1}) = AT^n \exp(-E_a/R)$, $AT^n (s^{-1})$, E_a/R (K).

No.	Reaction	Α	п	E_a/R (K)
k_{41}	$M28 \rightarrow M29$	2.92×10^{11}	0.66	16915.
k_{42}	$M29 \rightarrow M30$	1.50×10^{09}	0.90	-65.
<i>k</i> ₄₃	$M30 \rightarrow M31$	2.28×10^{09}	1.22	1524.
k_{44}	$M31 \rightarrow P2 + P27$	8.98×10^{10}	1.00	12619.
k_{45}	$M30 \rightarrow M32$	6.08×10^{02}	2.58	2663.
k_{46}	$M32 \rightarrow M33$	6.36×10^{09}	0.64	626.
k_{47}	$M33 \rightarrow P3 + P28$	1.38×10^{09}	1.31	17053.
k_{48}	$M32 \rightarrow M34$	2.66×10^{08}	0.82	8272.
k_{49}	$\mathrm{M34} \rightarrow \mathrm{P17} + \mathrm{P29}$	1.55×10^{10}	1.02	17412.
k_{50}	$M34 \rightarrow P17 + P30$	1.74×10^{10}	0.98	15751.
k_{51}	$M34 \rightarrow M35$	1.94×10^{12}	0.26	13712.
k_{52}	$M35 \rightarrow P6 + P31$	9.41×10^{12}	0.42	7590.

A similar scenario arises upon \dot{H} atom addition at C-4, Figure 3, where ring opening of the adduct proceeds through a barrier of 145.7 ± 2.2 kJ mol⁻¹ with the formation of a secondary vinylic radical (**M37**) being endothermic by 80.1 ± 2.5 kJ mol⁻¹. Computed rate constants for ring opening reactions of C-3 and C-4 \dot{H} atom addition adducts are in excellent agreement, k_{41} and k_{54} respectively.

The fate of these acyclic intermediates is of a lesser importance than those formed from addition at C-2, as β -scission of a C–H bond to reform 2MF and hydrogen atom dominates over ring opening based on our computed

Table 2: Arrhenius coefficients of high-pressure limiting rate constants for for reactions relevant to hydrogen atom addition at C-4 of 2-methylfuran. $k(s^{-1}) = AT^n \exp(-E_a/R)$, $AT^n (s^{-1})$, E_a/R (K).

-			u/ //	-)) u)	
	No.	Reaction	Α	п	E_a/R (K)
	<i>k</i> 54	$M36 \rightarrow M37$	2.98×10^{12}	0.39	17520.
	k55	$M37 \rightarrow M38$	5.81×10^{08}	0.93	-334.
	k56	$M38 \rightarrow P4 + P32$	4.63×10^{10}	0.98	11385.
	k ₅₇	$M37 \rightarrow M39$	4.08×10^{12}	-0.01	615.
	k_{58}	$M39 \rightarrow M40$	1.41×10^{09}	0.92	183.
	k59	$M40 \rightarrow P6 + P33$	1.11×10^{11}	0.64	3744.

Figure 3: Potential energy surface for hydrogen atom addition at carbon 4 of 2-methylfuran. CBS-QB3, *CBS-APNO* and **G3** energies in kJ mol⁻¹ at 0 K relative to reactants.

kinetics and thermochemistry. As a result, RRKM/ME analysis has not been applied to addition at C-3 and C-4, although the fate of the ring opening products has nontheless been investigated to gain further mechanistic information into the decomposition pathways of furanic species.

M29 can undergo isomerisation *via* a 1 \rightarrow 5 hydrogen shift to form a more stable primary radical (**M32**) with the ultimate formation of ketene and an allyl radical through a transition state (**TS47**) at 61.7 ± 4.9 kJ mol⁻¹ above 2MF and hydrogen atom. The formation of acetylene and the acetonyl radical is also possible *via* **TS44**, and the rate constant for its formation from **M31** is seen to become competitive with that of the hydrogen transfer reaction (k_{47}) at temperatures above 1600 K. Ring closing to form a cyclopenteneone radical (**M34**), which can occur with a computed barrier of 113.8 ± 1.1 kJ mol⁻¹, is unlikely despite the modest activation energy for the process.

M37 can form a more stable aldehydic radical (M40) *via* hydrogen transfer through TS58. The subsequent decarbonylation reaction forming CO and $\dot{C}H_2$ —CH=CH—CH₃ through TS59 is quite quite rapid. The endothermic formation of CH=C—CH and $\dot{C}H_2$ —CH=O radicals can also occur and despite the large barrier (95.4 ± 2.7 kJ mol⁻¹) when compared with the hydrogen transfer reaction, its formation should become competitive above 1500 K.

3 Influence of $\langle \Delta E_d \rangle$ on RRKM/ME Derived k(T, p)

In order to evaluate the influence of $\langle \Delta E_d \rangle$ on the computed temperature- and pressure-dependent rate constants, test calculations with $\langle \Delta E_d \rangle = 500 \text{ cm}^{-1}$ and 2000 cm⁻¹ were carried out on some potential energy surfaces. The pressure chosen was 2.5 atm., equivalent to the average pressure in the shock tube pyrolysis study of Lifshitz *et al.*.

The results show a small variation in the computed rate constants for the unimolecular decomposition reactions of 2-methylfuran (Figures 4–7), with the largest variations observed at the highest temperatures studied (2000 K) where fall-off in the high-pressure limiting rate constants is greatest. Relative to the $\langle \Delta E_d \rangle = 1000 \text{ cm}^{-1}$ computations, the rate constants computed with $\langle \Delta E_d \rangle = 500 \text{ cm}^{-1}$ and 2000 cm⁻¹ vary by \approx a factor of two at 2000 K. Under the conditions of Lifshitz *et al.* study (1200–1500 K, once their temperature profile is corrected), the variation in the computed rate constants with the various values of $\langle \Delta E_d \rangle$ chosen is minimal, and the rate constants are close to the high-pressure limiting rate constants in all cases.

Test calculations were also carried out on the reaction 2-methylfuran + hydrogen atom \rightarrow products (C-2 addition, Figures 8–11). The largest variation observed in the computed rate constants was \approx a factor of 7 at 600 K for the reaction 2-methylfuran + hydrogen atom \rightarrow **P9** (formyl radical) + **P24** (1,3-butadiene) with $\langle \Delta E_d \rangle = 500 \text{ cm}^{-1}$. However, it should be noted that this is a very minor reaction pathway whose branching ratio is $\approx 5 \times 10^{-08}$ under these conditions (600 K, 2.5 atm, $\langle \Delta E_d \rangle = 1000 \text{ cm}^{-1}$). The uncertainty in this reaction pathway due to the choice of $\langle \Delta E_d \rangle$ is of little concern with respect to kinetic modelling studies. For all other reactions pathways, reducing $\langle \Delta E_d \rangle$ to 500 cm⁻¹ led to a variation of \approx a factor of 2–3 from the rate constants computed with $\langle \Delta E_d \rangle = 1000 \text{ cm}^{-1}$. Increasing $\langle \Delta E_d \rangle$ to 2000 cm⁻¹ resulted in a variation in the computed rate constants of \approx a factor of 2.

3.1 Unimolecular Decomposition of 2-Methlyfuran

Figure 4: Influence of altering $\langle \Delta E_d \rangle \pm$ a factor of 2 on the computed rate constant for the reaction 2-methylfuran \rightarrow **P3** + **P4** (ketene + propyne) at a pressure of 2.5 atm.

Figure 5: Influence of altering $\langle \Delta E_d \rangle \pm$ a factor of 2 on the computed rate constant for the reaction 2-methylfuran \rightarrow M6 (2,3-pentadiene-1-al) at a pressure of 2.5 atm.

Figure 6: Influence of altering $\langle \Delta E_d \rangle \pm$ a factor of 2 on the computed rate constant for the reaction 2-methylfuran \rightarrow M9 (3,4-pentadiene-2-one) at a pressure of 2.5 atm.

Figure 7: Influence of altering $\langle \Delta E_d \rangle \pm$ a factor of 2 on the computed rate constant for the reaction 2-methylfuran \rightarrow M10 + P17 (2-furanylmethyl + hydrogen atom) at a pressure of 2.5 atm.

3.2 Hydrogen Atom Addition at Carbon 2 of 2-Methylfuran

Figure 8: Computed product branching ratios at 2.5 atm. for the reaction 2-methylfuran + hydrogen atom (C-2 addition) \rightarrow products. $\langle \Delta E_d \rangle = 2000 \text{ cm}^{-1} (--); \langle \Delta E_d \rangle = 500 \text{ cm}^{-1} (--).$

Figure 9: Ratio of computed rate constants for the reaction 2-methylfuran + hydrogen atom \rightarrow products at 2.5 atm., with $\langle \Delta E_d \rangle = 500 \text{ cm}^{-1}$ and $\langle \Delta E_d \rangle = 1000 \text{ cm}^{-1}$.

Figure 10: Computed product branching ratios at 2.5 atm. for the reaction 2-methylfuran + hydrogen atom (C-2 addition) \rightarrow products. $\langle \Delta E_d \rangle = 2000 \text{ cm}^{-1} (--); \langle \Delta E_d \rangle = 2000 \text{ cm}^{-1} (--).$

Figure 11: Ratio of computed rate constants for the reaction 2-methylfuran + hydrogen atom \rightarrow products at 2.5 atm., with $\langle \Delta E_d \rangle = 2000 \text{ cm}^{-1}$ and $\langle \Delta E_d \rangle = 1000 \text{ cm}^{-1}$.

4 Pressure Dependent Rate Constants from RRKM/ME Calculations

4.1 Chemkin-PRO Compatible PLOG Rate Constants

Table 3: Chemkin-PRO PLOG format pressure- (atm) and temperature-dependent rate constants for the unimolec-
ular decomposition of 2-methylfuran and related intermediates. $k(s^{-1}) = AT^n \exp(-E_a/RT)$.

Reaction	p (atm)	Α	п	E_a (cal/mol)
$M1 \rightarrow M3$	0.01	5.12E+66	-15.39	97801
	0.1	1.25E+57	-12.47	93815
	1	4.11E+38	-7.10	82916
	2.5	9.13E+31	-5.19	78799
	10	4.49E+23	-2.80	73549
	100	3.41E+15	-0.48	68305
$M3 \rightarrow P3 + P4$	0.01	3.51E+48	-10.26	45743
	0.1	4.87E+54	-11.66	53545
	1	4.56E+48	-9.71	52461
	2.5	9.25E+43	-8.31	50120
	10	1.15E+36	-6.01	45637
	100	3.68E+25	-2.98	39180
$M1 \rightarrow M6$	0.01	2.17E+72	-17.14	105418
	0.1	2.77E+63	-14.37	102515
	1	3.81E+43	-8.58	91138
	2.5	1.10E+36	-6.41	86543
	10	1.98E+26	-3.60	80450
	100	1.95E+16	-0.74	74027
$M1 \rightarrow M9$	0.01	4.07E+70	-16.58	102965
	0.1	2.59E+61	-13.75	99646
	1	9.73E+41	-8.09	88398
	2.5	5.63E+34	-6.01	83964
	10	3.26E+25	-3.35	78165
	100	1.55E+16	-0.68	72168
$M1 \rightarrow M10 + P17$	0.01	2.89E+92	-22.81	127594
	0.1	1.06E+87	-20.85	128912
	1	1.42E+65	-14.34	117910
	2.5	2.15E+55	-11.48	112302
	10	1.63E+41	-7.39	103833
	100	1.97E+24	-2.53	93217
$M6 \rightarrow P5 + P6$	0.01	7.52E+57	-13.07	70107
	0.1	2.45E+45	-9.31	64145
	1	2.26E+34	-6.06	58261
	2.5	1.52E+30	-4.84	55869
	10	9.55E+24	-3.32	52837
	100	3.45E+18	-1.46	48961
$M6 \rightarrow P6 + P7$	0.01	1.82E+82	-19.88	99104
	0.1	1.35E+66	-14.92	92199
	1	5.20E+48	-9.73	83042
	2.5	3.19E+42	-7.90	79592
	10	4.14E+35	-5.86	75903
	100	3.60E+27	-3.48	71654

Reaction	p (atm)	Α	n	E_a (cal/mol)
$M9 \rightarrow P3 + P4$	0.01	4.63E+98	-24.44	115044
	0.1	5.48E+87	-20.97	111832
	1	2.57E+73	-16.59	105899
	2.5	1.72E+67	-14.74	102980
	10	7.68E+57	-11.97	98229
	100	2.61E+43	-7.73	90132
$M9 \rightarrow P13 + P14$	0.01	9.56E+85	-21.57	106694
	0.1	2.05E+76	-18.47	104322
	1	2.69E+62	-14.22	98759
	2.5	1.40E+56	-12.33	95815
	10	2.65E+46	-9.44	90900
	100	1.02E+31	-4.93	82324

Table 3: Chemkin-PRO PLOG format pressure- (atm) and temperature-dependent rate constants for the unimolecular decomposition of 2-methylfuran and related intermediates. $k(s^{-1}) = AT^n \exp(-E_a/RT)$.

Reaction	p (atm)	Α	n	E_a (cal/mol)
$M10 \rightarrow M11$	0.01	4.49E+61	-14.18	64492
	0.1	5.05E+59	-13.42	65593
	1	4.62E+50	-10.65	61945
	2.5	4.98E+45	-9.17	59475
	10	1.88E+37	-6.70	54959
	100	7.14E+23	-2.79	47253
N11 D17 D10	0.01	2 105 20		16066
$M11 \rightarrow P1/+P18$	0.01	3.18E+29	-/.0/	46866
	0.1	4.4/E+4/	-11.01	58081
	1	1.77E+62	-15.19	/1/11
	2.5	1.31E+00	-15.81	70149
	10	3.54E+65	-15.23	79663
	100	3.91E+47	-9.00	15512
$M11 \rightarrow M12$	0.01	1.92E+23	-3.09	12414
	0.1	1.36E+24	-3.27	13699
	1	9.86E+22	-2.88	13663
	2.5	1.01E+22	-2.58	13262
	10	1.11E+20	-2.00	12301
	100	3.10E+16	-0.96	10330
M12 . M12	0.01	2 2017 + 25	7.21	20102
$M12 \rightarrow M13$	0.01	2.29E+35	-/.31	30103
	0.1	1.3/E+40	-8.02	33990
	1	1.00E+41	-8.48	38/01
	2.5	2.23E+39	-1.81	38300
	10	2.20E+34	-0.54	20540
	100	1.01E+25	-2.90	30349
$M13 \rightarrow M14$	0.01	5.27E+27	-4.36	17157
	0.1	4.79E+24	-3.47	15507
	1	2.97E+20	-2.25	13109
	2.5	3.12E+18	-1.68	11914
	10	3.55E+15	-0.83	10112
	100	3.02E+11	0.33	7517
$M14 \rightarrow D6 + D10$	0.01	2 72E + 50	10.60	38251
10 + 10 + 119	0.01	2.72E+50 2.76E+56	12.06	45564
	1	6.26E±55	-11.63	48704
	25	1.11E+46	-8.82	42672
	10	2.95E+42	-7.69	42310
	100	1.33E+27	-3.25	33671
	100	1.001127	5.25	55671
$M13 \rightarrow M15$	0.01	8.53E+34	-6.33	24268
	0.1	9.35E+30	-5.17	22282
	1	1.15E+25	-3.45	19007
	2.5	1.33E+22	-2.60	17242
	10	6.13E+17	-1.35	14614
	100	3.37E+11	0.44	10639
$M15 \rightarrow M16$	0.01	1 30F±34	-6 30	24070
$1VIIJ \rightarrow 1VIIU$	0.01	1.500 ± 54 1.62E±30	-5.50	24079
	1	$2.36E \pm 24$	-3.15	18807
	2.5	2.95E+24	-2.61	17154

Table 4: Chemkin-PRO PLOG format pressure- (atm) and temperature-dependent rate constants for the unimolecular decomposition of 2-furanylmethyl radical and related intermediates. $k(s^{-1}) = AT^n \exp(-E_a/RT)$.

Reaction	p (atm)	Α	n	E_a (cal/mol)
	10	1.55E+17	-1.38	14559
	100	1.10E+11	0.38	10649
$M16 \rightarrow P17 + P20$	0.01	2.21E+77	-18.51	85730
	0.1	6.80E+81	-19.49	92440
	1	3.18E+73	-16.76	91956
	2.5	7.85E+58	-12.53	83194
	10	4.40E+50	-9.98	80861
	100	3.51E+23	-2.13	65606

Table 4: Chemkin-PRO PLOG format pressure- (atm) and temperature-dependent rate constants for the unimolecular decomposition of 2-furanylmethyl radical and related intermediates. $k(s^{-1}) = AT^n \exp(-E_a/RT)$.

Reaction	p (atm)	Α	n	E_a (cal/mol)
$M1 + P17 \rightarrow P10 + P22$	0.01	5.93E+17	-1.13	10160
	0.1	6.31E+15	-0.49	10818
	1	6.25E+15	-0.44	12156
	2.5	6.28E+15	-0.43	12614
	10	7.55E+15	-0.43	13614
	100	2.47E+21	-1.92	19575
$M1 + P17 \rightarrow P6 + P23$	0.01	3.28E+24	-3.07	13756
	0.1	1.22E+31	-4.83	20365
	1	3.52E+33	-5.39	25717
	2.5	6.30E+31	-4.83	26504
	10	1.69E+27	-3.43	27006
	100	1.27E+17	-0.43	26869
$\mathrm{M1} + \mathrm{P17} \rightarrow \mathrm{P9} + \mathrm{P24}$	0.01	4.08E+34	-6.02	26367
	0.1	2.42E+34	-5.81	29573
	1	9.29E+52	-10.88	46873
	2.5	4.08E+52	-10.63	50324
	10	1.52E+52	-10.34	55297
	100	3.16E+21	-1.47	43388
$M1 + P17 \rightarrow M17$	0.01	9.42E+64	-16.86	22009
	0.1	4.08E+65	-16.74	23378
	1	1.91E+39	-8.86	8696
	2.5	1.53E+38	-8.43	8247
	10	6.02E+43	-9.88	11916
	100	2.32E+61	-14.59	24263
\mathbf{M}_{1} , $\mathbf{D}_{1}\mathbf{T}$, \mathbf{M}_{1}	0.01	0.705.70	20.24	22220
$M1 + P1 / \rightarrow M18$	0.01	2.70E+78	-20.34	33228
	0.1	6.04E+//	-19.70	36451
	1	1.25E+55	-12.72	27383
	2.5	3.26E+53	-12.08	28627
	10	6.16E+44	-9.38	25899
	100	3.31E+30	-5.02	21520
$M1 + P17 \rightarrow M19$	0.01	1.39E+75	-19.25	30503
	0.01	6 80E+76	-19 31	34924
	1	6.02E+54	-12.51	26305
	2.5	9.25E+49	-10.96	25364
	10	9.05E+41	-8 47	22964
	100	1.32E+29	-4.53	19323
	100	1.022.22	1100	19020
$M1 + P17 \rightarrow M21$	0.01	2.78E+68	-17.43	23706
	0.1	2.14E+73	-18.47	28937
	1	6.73E+58	-13.83	24722
	2.5	2.87E+55	-12.69	24563
	10	1.01E+51	-11.17	24850
	100	1.98E+39	-7.45	23483
$\rm M1 + P17 \rightarrow M22$	0.01	4.29E+67	-17.15	23482
	0.1	1.30E+72	-18.06	28630
	1	2.15E+58	-13.63	24825
	2.5	2.21E+55	-12.60	24917

Table 5: Chemkin-PRO PLOG format pressure- (atm) and temperature-dependent rate constants for the chemically activated recombination of hydrogen atom with 2-methylfuran at carbon 2. $k(\text{cm}^3\text{mol}^{-1}\text{s}^{-1}) = AT^n \exp(-E_a/RT)$.

Reaction	p (atm)	Α	n	E_a (cal/mol)
	10	9.14E+50	-11.10	25255
	100	9.96E+38	-7.30	23686
$M1 + P17 \rightarrow M23$	0.01	7.53E+72	-18.62	26476
	0.1	1.17E+77	-19.39	32694
	1	7.07E+58	-13.68	26972
	2.5	4.14E+51	-11.46	24431
	10	1.98E+45	-9.45	23414
	100	3.59E+38	-7.20	24843
$M1 + P17 \rightarrow M24$	0.01	3.01E+70	-18.18	32181
	0.1	1.20E+91	-23.67	48986
	1	1.58E+77	-19.09	48486
	2.5	4.57E+69	-16.73	46964
	10	4.01E+51	-11.33	39795
	100	4.54E+48	-10.01	48245
$M1 + P17 \rightarrow M25$	0.01	9.09E+78	-20.71	37095
	0.1	6.30E+92	-24.28	49388
	1	1.90E+73	-18.04	45934
	2.5	1.94E+69	-16.70	46393
	10	7.29E+58	-13.45	44651
	100	5.86E+13	-0.26	23754

Table 5: Chemkin-PRO PLOG format pressure- (atm) and temperature-dependent rate constants for the chemically activated recombination of hydrogen atom with 2-methylfuran at carbon 2. $k(\text{cm}^3\text{mol}^{-1}\text{s}^{-1}) = AT^n \exp(-E_a/RT)$.

Reaction	p (atm)	A	п	E_a (cal/mol)
$M1 + P17 \rightarrow P10 + P34$	0.01	1.07E+39	-6.67	30846
	0.1	1.50E+47	-8.88	38568
	1	5.03E+47	-8.89	42758
	2.5	8.28E+44	-8.04	42837
	10	6.18E+36	-5.65	40637
	100	1.44E+32	-4.18	44351
$\mathrm{M1} + \mathrm{P17} \rightarrow \mathrm{P6} + \mathrm{P36}$	0.01	1.07E+47	-9.58	29917
	0.1	1.48E+51	-10.63	36022
	1	5.31E+47	-9.49	38643
	2.5	1.28E+43	-8.11	37934
	10	4.80E+41	-7.57	41809
	100	7.91E+39	-6.79	51714
$M1 + P17 \rightarrow M41$	0.01	4.76E+68	-17.25	26292
	0.1	9.15E+51	-12.17	18071
	1	9.18E+32	-6.58	6260
	2.5	5.44E+32	-6.47	5802
	10	2.88E+39	-8.30	9/88
	100	1.09E+00	-13.95	23557
$M1 + D17 \rightarrow M42$	0.01	2 22E + 68	16 60	25474
$W11 + F17 \rightarrow W142$	0.01	2.33E+08	-10.09	23474
	1	2.28E+51	-11.16	21670
	25	6.26E+31	-10.32	21070
	10	6.08E+44	-8 99	21593
	100	5.60E+37	-6.72	22140
$M1 + P17 \rightarrow M43$	0.01	1.17E+72	-17.75	29767
	0.1	3.88E+62	-14.68	27048
	1	1.83E+53	-11.69	24764
	2.5	5.42E+51	-11.14	25267
	10	9.73E+47	-9.89	25627
	100	1.39E+41	-7.65	26453
$M1 + P17 \rightarrow M44$	0.01	5.30E+58	-14.38	24546
	0.1	2.52E+58	-13.88	27696
	1	1.07E+56	-12.76	31267
	2.5	3.18E+57	-13.02	34452
	10	1.27E+55	-12.07	37352
	100	1.53E+40	-7.38	37071
M1 + D17 - M45	0.01	2 075 - 55	12.40	21200
$M11 + P1/ \rightarrow M143$	0.01	2.9/E+33	-13.40	21399
	0.1	ソ.04E+30 1 13E - 55	-13.41	23/44
	1	1.13E+33 5.76E+55	-12.43 12.49	29300 30006
	2.3 10	5.70E+55 5.12F±54	-12.40 -11.01	36035
	100	J.12E+J4 4 Q1F±40	-11.91	36344
	100	T.7121TU	7.70	7074

Table 6: Chemkin-PRO PLOG format pressure- (atm) and temperature-dependent rate constants for the chemically activated recombination of hydrogen atom with 2-methylfuran at carbon 5. $k(\text{cm}^3\text{mol}^{-1}\text{s}^{-1}) = AT^n \exp(-E_a/RT)$.

4.2 Comparison of RRKM/ME Results from the ChemRate and Multiwell Codes for the Thermal Decomposition of 2-furanylmethyl and related intermediates

Figure 12: Computed rate constants (p (atm)) for the reaction M10 \rightarrow M11 from the ChemRate (lines) and Multiwell (symbols) codes.

Figure 13: Computed rate constants (p (atm)) for the reaction M11 \rightarrow M12 from the ChemRate (lines) and Multiwell (symbols) codes.

Figure 14: Computed rate constants (*p* (atm)) for the reaction M12 \rightarrow M13 from the ChemRate (lines) and Multiwell (symbols) codes.

Figure 15: Computed rate constants (p (atm)) for the reaction M13 \rightarrow M14 from the ChemRate (lines) and Multiwell (symbols) codes.

Figure 16: Computed rate constants (p (atm)) for the reaction M14 \rightarrow P6 + P19 from the ChemRate (lines) and Multiwell (symbols) codes.

Figure 17: Computed rate constants (p (atm)) for the reaction M13 \rightarrow M15 from the ChemRate (lines) and Multiwell (symbols) codes.

Figure 18: Computed rate constants (*p* (atm)) for the reaction M15 \rightarrow M16 from the ChemRate (lines) and Multiwell (symbols) codes.

Figure 19: Computed rate constants (*p* (atm)) for the reaction M16 \rightarrow P17 + P20 from the ChemRate (lines) and Multiwell (symbols) codes.

5 Comparison of High Pressure Limiting Rate Constants with Literature

Figure 20: Calculated high-pressure limiting rate constants for hydrogen and methyl group shifts in 2-methylfuran. — Davis and Sarathy [2], - - this study. Legend refers to notation in main text. Rate Constants from [2] are multipled by 2 for direct comparison with the results of *this study*, as optical isomer corrections were not accounted for therein.

Figure 21: Calculated high pressure limiting rate constants for hydrogen atom abstraction from 2-methylfuran by hydrogen atom. — Davis and Sarathy [2], - - this study. Legend refers to notation in main text.

6 Comparison of Mechanism with Literature Oxidation Experiments

6.1 Atmospheric Pressure Ignition Delay Times of 1% 2-Methylfuran/Argon Mixtures

Figure 22: Atmospheric pressures experimental ignition delay times (symbols, [5]) as a function of temperature and O_2 concentration with 20% uncertainty bars and current model predictions (lines).

6.2 Ignition Delay Times of 2-Methylfuran/O₂/Argon Mixtures at Elevated Pressures

Figure 23: Experimental ignition delay times with 15% uncertainty bars (symbols, [6]) for 0.752% 2MF, 4.511% O_2 and 94.737% Ar ($\phi = 1.0$) with modelling calculations (lines).

Figure 24: Experimental ignition delay times with 15% uncertainty bars (symbols, [6]) for 1.98% 2MF, 5.941% O₂ and 92.079% Ar ($\phi = 2.0$) with modelling calculations (lines).

Figure 25: Experimental ignition delay times with 15% uncertainty bars (symbols, [6]) for 1.0% 2MF, 6.0% O₂ and 93.0% Ar ($\phi = 1.0$) with modelling calculations (lines).

Figure 26: Experimental ignition delay times with 15% uncertainty bars (symbols, [6]) for 0.503% 2MF, 6.030% O₂ and 93.467% Ar ($\phi = 0.5$) with modelling calculations (lines).

Figure 27: Experimental ignition delay times with 15% uncertainty bars (symbols, [6]) for 0.252% 2MF, 6.045% O₂ and 93.703% ($\phi = 0.25$) Ar with modelling calculations (lines).

Figure 28: Experimental ignition delay times with 15% uncertainty bars (symbols, [6]) for 1.506% 2MF, 9.036% O₂ and 89.448% Ar ($\phi = 1.0$) with modelling calculations (lines).

Figure 29: Experimental ignition delay times with 15% uncertainty bars (symbols, [6]) for 3.383% 2MF, 20.298% O₂ and 76.319% Ar ($\phi = 1.0$) with modelling calculations (lines).

6.3 Atmospheric Pressure Laminar Burning Velocities of 2-Methylfuran-Synthetic Air Mixtures

Figure 30: Experimental laminar burning velocities (symbols) as a function of unburnt gas temperature and equivalence ratio with current model predictions (lines). Closed symbols [5] (—), open symbols [7] (––).

6.4 Speciation in Low-Pressure 2-Methylfuran/O₂/Ar Flames

6.4.1 $\phi = 1.0$

Figure 31: Experimental profiles [8] for main species measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 32: Experimental profiles [8] for methane, formaldehyde and methanol measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 33: Experimental profile [8] for methyl radical measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –). Refer to [8] for a discussion on the uncertainties (up to a factor of 4) in the determination of concentrations of small radicals.

Figure 34: Experimental profiles [8] for formyl and methoxy radicals measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 35: Experimental profiles [8] for acetylene, ethylene and ethane measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 36: Experimental profiles [8] for ketene, acetaldehyde and dimethyl ether measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 37: Experimental profiles [8] for vinyl, ethyl and vinoxy radicals measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 38: Experimental profiles [8] for propargyl radical, propyne, propene and acrolein measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 39: Experimental profiles [8] for allyl and acrolein radicals and propanal measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 40: Experimental profiles [8] for *n*-propyl and allyloxy radicals measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 41: Experimental profiles [8] for diacetylene, vinylacetylene and 1,3-butadiene measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 42: Experimental profiles [8] for 1-butene, methyl vinyl ketone and *butanal* measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 43: Experimental profiles [8] for furan measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –). Vinyl ketene yields, which were not quantified experimentally, are included for comparison.

Figure 44: Experimental profiles [8] for acetylenylketene, *n*-butenyl and *n*-butadienyl measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 45: Experimental profiles [8] for 1,3-cyclopentadiene, 1,3-pentadiene and 3-pentene-2-one measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 46: Experimental profiles [8] for 3-pentene-2-one-1-al, furfural and 2-furanylmethyl measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 47: Experimental profiles [8] for 1,3,4-pentatriene-1-one and cyclopenteneyl radical measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 48: Experimental profiles [8] for triacetylene, benzyne, benzene and phenol measured in $\phi = 1.0$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

6.4.2 $\phi = 1.7$

Figure 49: Experimental profiles [8] for main species measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 50: Experimental profiles [8] for methane, formaldehyde and methanol measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 51: Experimental profile [8] for methyl radical measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –). Refer to [8] for a discussion on the uncertainties (up to a factor of 4) in the determination of concentrations of small radicals.

Figure 52: Experimental profiles [8] for formyl and methoxy radicals measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 53: Experimental profiles [8] for acetylene, ethylene and ethane measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 54: Experimental profiles [8] for ketene, acetaldehyde and dimethyl ether measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 55: Experimental profiles [8] for vinyl, ethyl and vinoxy radicals measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 56: Experimental profiles [8] for propargyl radical, propyne, propene and acrolein measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 57: Experimental profiles [8] for allyl and acrolein radicals and propanal measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 58: Experimental profiles [8] for *n*-propyl and allyloxy radicals measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 59: Experimental profiles [8] for diacetylene, vinylacetylene and 1,3-butadiene measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 60: Experimental profiles [8] for 1-butene, methyl vinyl ketone and *i*-butanal measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 61: Experimental profile [8] for furan measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –). Vinyl ketene yields, which were not quantified experimentally, are included for comparison.

Figure 62: Experimental profiles [8] for acetylenylketene, *n*-butenyl and *n*-butadienyl measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 63: Experimental profiles [8] for 1,3-cyclopentadiene, 1,3-pentadiene and 3-pentene-2-one measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 64: Experimental profiles [8] for 3-pentene-2-one-1-al, furfural and 2-furanylmethyl measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (– –).

Figure 65: Experimental profiles [8] for 1,3,4-pentatriene-1-one and cyclopenteneyl radical measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

Figure 66: Experimental profiles [8] for triacetylene, benzyne, benzene and phenol measured in $\phi = 1.7$ 2-methylfuran/O₂/Ar flame with model calculations from *this work* (—) and the study of Tran *et al.* [8] (––).

7 Electronic Energies of Stationary Points

Table 7: Electronic energies of potential energy surface minima (hartrees) at 0 and 298.15 K, at the CBS-QB3, G3 and CBS-APNO levels of theory.

		0 V			200 V	
		0 K			298 K	
SPECIES KEY	CBS-QB3	CBS-APNO	G3	CBS-QB3	CBS-APNO	G3
M1	-268.878010	-269.239467	-269.140183	-268.871675	-269.233241	-269.133826
M2	-268.780525	-269.141719	-269.043882	-268.774038	-269.135313	-269.037350
M3	-268.790419	-269.151663	-269.053756	-268.783748	-269.145113	-269.047076
M4		-269.140879	-269.043143		-269.134552	-269.036692
M5	-268.828555	-269.189009	-269.092552	-268.820712	-269.181216	-269.084637
M6	-268.833058	-269.193615	-269.097062	-268.825259	-269.185891	-269.089199
M7	-268.787268	-269.148816	-269.050872	-268.780430	-269.142226	-269.044166
M8	-268.837026	-269.197901	-269.101105	-268.829150	-269.190105	-269.093191
M9	-268.840399	-269.201196	-269.104571	-268.832544	-269.193440	-269.096683
M10	-268.242558	-268.603230	-268.502648	-268.236633	-268.597206	-268.496472
M11	-268.196518	-268.556205	-268.457185	-268.189076	-268.548544	-268.449384
M12	-268.198158	-268.557780	-268.458999	-268.190710	-268.550103	-268.451174
M13	-268.219529	-268.580434	-268.482047	-268.212108	-268.572919	-268.474365
M14	-268.208236			-268.200944		
M15	-268.218942	-268.580115	-268.481620	-268.211640	-268.572689	-268.474032
M16	-268.252517	-268.613698	-268.513834	-268.246553	-268.607680	-268.507688
INT1	-267.571448	-267.932155	-267.834361	-267.565545	-267.926013	-267.828070
M17	-269.426024	-269.788171	-269.689663	-269.419313	-269.781369	-269.682704
M18	-269.419453	-269.780791	-269.683088	-269.411631	-269.772651	-269.674835
M19	-269.422043	-269.783263	-269.685168	-269.414092	-269.775271	-269.677043
M20	-269.413783	-269.776428		-269.405853	-269.768529	
M21	-269.427416	-269.788712	-269.691038	-269.419638	-269.780759	-269.682943
M22	-269.426484	-269.787669	-269.689808	-269.418482	-269.779554	-269.681562
M23	-269.428124	-269.790975	-269.691527	-269.420239	-269.782884	-269.683333
M24	-269.415684	-269.777058	-269.680532	-269.407798	-269.769087	-269.672401
M25	-269.415089	-269.776869	-269.680052	-269.407249	-269.768921	-269.671971
M26	-269.413862	-269.775588	-269.676084	-269.406485	-269.767901	-269.668250
M27	-269.425835	-269.787791	-269.689875	-269.419137	-269.780990	-269.682923
M28	-269.408650	-269.770785	-269.671905	-269.401728	-269.763978	-269.664959
M29	-269.381422	-269.742612	-269.646344	-269.372996	-269.734233	-269.637806
M30	-269.383034	-269.744449	-269.648290	-269.374692	-269.736172	-269.639862
M31	-269.382326	-269.743711	-269.647581	-269.373964	-269.735414	-269.639119
M32	-269.407525	-269.769347	-269.671789	-269.399593	-269.761489	-269.663765
M33	-269.407433	-269.769275		-269.399482	-269.761382	
M34	-269.428082	-269.790832	-269.692642	-269.421092	-269.783930	-269.685582
M35	-269.407639	-269.770444	-269.672986	-269.399634	-269.762501	-269.664909
M36	-269.410042	-269.772122	-269.673673	-269.403112	-269.765325	-269.666743
M37	-269.379642	-269.740604	-269.644070	-269.371172	-269.732068	-269.635386
M38	-269.380945	-269.742131	-269.645575	-269.372547	-269.733722	-269.637029
M39	-269.382060	-269.743034	-269.646592	-269.373606	-269.734593	-269.638004
M40	-269.412609	-269.775079	-269.677128	-269.404353	-269.766854	-269.668761
M41	-269.428563	-269.790408	-269.691568	-269.421611	-269.783345	-269.684359
M42	-269.431395	-269.792770	-269.695758	-269.423471	-269.784789	-269.687634
M43	-269.428054	-269.789416	-269.692063	-269.420328	-269.781622	-269.684128
M44	-269.410349	-269.771902	-269.672273	-269.402454	-269.763992	-269.664221
M45	-269.412705	-269.774042	-269.674618	-269.404677	-269.765995	-269.666431
M46	-269.371297	-269.733934	-269.635435	-269.363147	-269.725758	-269.627143
M47	-269.409124	-269.772176		-269.400918	-269.763967	
M48	-269.410381	-269.772863		-269.402134	-269.764632	

		0 K			298 K	
SPECIES KEY	CBS-QB3	CBS-APNO	G3	CBS-QB3	CBS-APNO	G3
TS1	-268.746128	-269.107874	-269.008275	-268.740121	-269.101944	-269.002235
TS2	-268.773442	-269.136209	-269.036282	-268.767167	-269.130023	-269.029972
TS3	-268.736922	-269.097899	-268.999123	-268.729195	-269.090488	-268.991566
TS4	-268.742039	-269.103398	-269.004371	-268.734061	-269.095741	-268.996592
TS5	-268.765437	-269.127648	-269.028449	-268.759340	-269.121616	-269.022294
TS6		-269.141949	-269.044112		-269.135611	-269.037656
TS7	-268.820518	-269.180773	-269.084361	-268.813204	-269.173574	-269.077045
TS8	-268.763132	-269.124961		-268.755571	-269.117871	
TS9	-268.733495		-268.999152	-268.725922		-268.990439
TS10	-268.767849	-269.130172	-269.030746	-268.761602	-269.124020	-269.024476
TS11	-268.785869	-269.148513	-269.050644	-268.779309	-269.142682	-269.043801
TS12	-268.830516	-269.190787	-269.094588	-268.823329	-269.183716	-269.087389
TS13	-268.730957	-269.095001	-268.995346	-268.723270	-269.087148	-268.987478
TS14	-268.178692			-268.172433		
TS15	-268.112920	-268.473401		-268.104830	-268.465089	
TS16	-268.182698	-268.542470	-268.445277	-268.175565	-268.535099	-268.437750
TS17	-268.159951	-268.521173	-268.420075	-268.153223	-268.514191	-268.412942
TS18	-268.206930			-268,199944		
TS19	-268,170360			-268.161919		
TS20	-268 202003	-268 563008	-268 466357	-268 194987	-268 555959	-268 459123
TS21	-268.200554	-268.559642	2001.00007	-268,194340	-268.553295	2001.07120
TS22	-268.164829	-268.522351	-268.424624	-268.157818	-268.515558	-268.417652
TS23a	-267 546464	-267 907822	-267 807266	-267 540672	-267 902207	-267 801553
TS23b	-267.562621	-267.925368	-267.826986	-267.556788	-267.919413	-267.820903
TS24	-269 373163	-269 734491	-269 637586	-269 366305	-269 727653	-269 630582
TS25	-269 376918	-269 742674	-269 639333	-269 369585	-269 735143	-269 631822
TS26	-269.387892	20/11/20/1	-269.653768	-269.381358	2000000110	-269.647004
TS27	-269.410890		20/1000/00	-269.403242		
TS28	-269.374059	-269.738351		-269.366838	-269,730931	
TS29	-269 374986	20/1100001		-269 365906	2000000000	
TS30	-269 391722		-269 656570	-269 384961		-269 649555
TS31	-269.413417	-269.774823	-269.678314	-269.405852	-269.767189	-269.670551
TS32	-269.375835	-269.738354	2071070011	-269.368472	-269.730935	2001070001
TS33	-269.407053	20/1100000		-269.399739	200000000	
TS34	-269 363161		-269 626267	-269 355898		-269 618977
TS35	-269.412277	-269,773763	-269.676817	-269.405105	-269.766518	-269.669444
TS36	-269.364913	20/11/07/00	2001000000	-269.356503	20000000000	_0,100,111
TS37	-269.387089			-269.380657		
TS38	-269.354847	-269.716069		-269.347955	-269,708892	
TS39	-269.367642	-269.732494	-269.634278	-269.360573	-269.725327	-269.626942
TS40	-269.371151	-269.732199	-269.634047	-269.364094	-269.725194	-269.626882
TS41	-269 354972	-269 717347	-269 617813	-269 347845	-269 710280	-269.610590
TS42	-269.380722	-269.741929	-269.645722	-269.373264	-269.734504	-269.638155
TS43	-269.377260	-269.739114	-269.643047	-269.369064	-269.730871	-269.634623
TS44	-269.343865	-269,705182	-269.607780	-269.334910	-269.696102	-269.598493
TS45	-269 367034	-269 730287	-269 631275	-269 360109	-269 723315	-269.624150
TS46	-269 404123	-269 765792	207.031273	-269 396928	-269 758647	207.021120
TS47	-269.353030	-269.717239		-269.343925	-269,707691	
TS48	-269.378690	-269.741084	-269.642710	-269.371989	-269.734258	-269.635746
TS49	-269.373026	-269.73388	-269.63722	-269.36597	-269.727	-269.6302

Table 8: Electronic energies of transition states (hartrees) at 0 and 298.15 K, at the CBS-QB3, G3 and CBS-APNO levels of theory.

		0 K			298 K		
SPECIES KEY	CBS-QB3	CBS-APNO	G3	CBS-QB3	CBS-APNO	G3	
TS50	-269.37811	-269.73877	-269.64237	-269.37108	-269.73188	-269.63536	_
TS51	-269.385097	-269.74764	-269.64883	-269.37827	-269.74076	-269.64181	
TS52	-269.384934	-269.747059	-269.649809	-269.376235	-269.738711	-269.641320	
TS53	-269.370262	-269.73152	-269.63352	-269.36327	-269.72456	-269.6264	
TS54	-269.354953	-269.71717	-269.61723	-269.34776	-269.70998	-269.60989	
TS55	-269.379522	-269.74044	-269.64393	-269.37186	-269.73275	-269.6361	
TS56	-269.345266	-269.70628	-269.60805	-269.33647	-269.69728	-269.59888	
TS57	-269.378011	-269.7389	-269.64236	-269.37019	-269.73111	-269.63445	
TS58	-269.365541	-269.72791	-269.62847	-269.35782	-269.72024	-269.62065	
TS59	-269.400480	-269.762863	-269.664487	-269.392072	-269.754421	-269.655913	
TS60	-269.37516	-269.73576	-269.63883	-269.36789	-269.72868	-269.63158	
TS61	-269.393982			-269.38721			
TS62	-269.35303	-269.71724		-269.34393	-269.70769		
TS63	-269.421257	-269.78309	-269.68674	-269.41391	-269.77571	-269.67921	
TS64	-269.380615			-269.3735			
TS65	-269.407735			-269.40046			
TS66	-269.338546	-269.70256	-269.60613	-269.32958	-269.694	-269.59737	
TS67	-269.369328	-269.73206	-269.63502	-269.36156	-269.72418	-269.62701	
TS68	-269.366156	-269.72932	-269.63061	-269.3586	-269.72164	-269.62278	
TS69	-269.408708			-269.4012			
TS70	-269.399381	-269.76199	-269.66354	-269.39098	-269.75359	-269.65499	

Table 8: Electronic energies of transition states (hartrees) at 0 and 298.15 K, at the CBS-QB3, G3 and CBS-APNO levels of theory.

Table 9: Electronic energies of fragmentation products (hartrees) at 0 and 298.15 K, at the CBS-QB3, G3 and CBS-APNO levels of theory.

		0 K			298 K	
SPECIES KEY	CBS-QB3	CBS-APNO	G3	CBS-QB3	CBS-APNO	G3
P1	-191.599268	-191.845578	-191.775326	-191.593607	-191.839978	-191.769643
P2	-77.187419	-77.301546	-77.275962	-77.183653	-77.297904	-77.272274
P3	-152.375854	-152.563747	-152.506868	-152.371390	-152.559357	-152.502428
P4	-116.421682	-116.595023	-116.555356	-116.416763	-116.590234	-116.550501
P5	-155.646207	-155.877658	-155.825190	-155.640225	-155.871804	-155.819230
P6	-113.182008	-113.311629	-113.267369	-113.178703	-113.308324	-113.264064
P7	-155.648350	-155.879729	-155.827386	-155.642329	-155.873765	-155.821333
P8	-155.008157	-155.239852	-155.185648	-155.001788	-155.233378	-155.179038
P9	-113.704761	-113.835367	-113.791540	-113.700959	-113.831568	-113.787739
P10	-39.744800	-39.803679	-39.793293	-39.740785	-39.799517	-39.789047
P11	-228.963076	-229.265558	-229.179231	-228.956860	-229.259312	-229.172852
P12	-228.965879	-229.268213	-229.182184	-228.959574	-229.261867	-229.175706
P13	-152.942049	-153.131169	-153.073738	-152.937133	-153.126240	-153.068768
P14	-115.778670	-115.951756	-115.911633	-115.773628	-115.946653	-115.906398
P15	-228.958465	-229.260954		-228.951912	-229.254681	
P16	-228.960097	-229.262597		-228.953791	-229.256365	
P17	-0.499818	-0.499946	-0.501003	-0.497457	-0.497585	-0.498642
P18	-267.618427	-267.978869	-267.880816	-267.611059	-267.971636	-267.873455
P19	-154.991766	-155.223308	-155.168855	-154.986126	-155.217479	-155.163060
P20	-267.663797	-268.024160	-267.925018	-267.658107	-268.018546	-267.919292
P21	-151.708757	-151.897602	-151.840730	-151.704285	-151.892633	-151.835687

		0 K			298 K	
SPECIES KEY	CBS-QB3	CBS-APNO	G3	CBS-QB3	CBS-APNO	G3
P22	-229.643105	-229.946256	-229.859940	-229.638424	-229.941643	-229.855244
P23	-156.196597	-156.428403	-156.377094	-156.190323	-156.422134	-156.370723
P24	-155.662340	-155.893410	-155.841379	-155.656670	-155.887776	-155.835664
P25	-75.649720	-75.723054	-75.694904	-75.646415	-75.719750	-75.691600
P26	-193.712772	-194.002045	-193.933769	-193.707641	-193.996961	-193.928586
P27	-192.168433	-192.414918	-192.344792	-192.162382	-192.408912	-192.338706
P28	-117.009514	-117.183147	-117.144897	-117.004726	-117.178269	-117.139937
P29	-268.876456	-269.238313	-269.139753	-268.870251	-269.232171	-269.133501
P30	-268.882498	-269.244390	-269.145813	-268.876332	-269.238235	-269.139558
P31	-156.211316	-156.443511		-156.204705	-156.436817	
P32	-152.932833	-153.120583	-153.063707	-152.928348	-153.116108	-153.059187
P33	-156.239817	-156.471904	-156.419916	-156.233541	-156.465498	-156.413404
P34	-229.618062	-229.921239	-229.837341	-229.611692	-229.914963	-229.830972
P35	-116.971430	-117.144744	-117.106687	-116.966319	-117.139622	-117.101499
P36	-156.238812	-156.471114	-156.418959	-156.232480	-156.464603	-156.412360

Table 9: Electronic energies of fragmentation products (hartrees) at 0 and 298.15 K, at the CBS-QB3, G3 and CBS-APNO levels of theory.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2014

8 Geometries of Stationary Points

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Ζ
	M1 C	CBS-QB3			M1 C	BS-APNO			Μ	[1 G3	
6	-1.3972860	-0.7320440	-0.0003310	6	1.3927340	-0.7385560	0.0000170	6	1.3850100	-0.7244670	0.0002030
6	-1.5470180	0.6156580	0.0000750	6	1.5467530	0.6161820	-0.0000140	6	1.5442920	0.6037180	-0.0000830
6	-0.2201260	1.1624850	-0.0002060	6	0.2301130	1.1648740	0.0000110	6	0.2133730	1.1545860	0.0003150
6	0.6385010	0.1064790	-0.0000320	6	-0.6394200	0.1094460	-0.0000160	6	-0.6260720	0.1065660	0.0000970
8	-0.0724600	-1.0625710	0.0004010	1	2.0790690	-1.5719760	0.0000040	1	2.0691420	-1.5445490	0.0002030
1	-2.0866490	-1.5590600	-0.0005010	1	2.4846490	1.1541030	0.0000200	1	2.4719150	1.1378390	-0.0002960
1	-2.4790830	1.1581260	0.0001350	1	-0.0435490	2.2113760	-0.0000100	1	-0.0610060	2.1896860	0.0004070
1	0.0551460	2.2054040	-0.0003490	8	0.0660410	-1.0659870	-0.0000080	8	0.0770890	-1.0428640	0.0003130
6	2.1200270	-0.0142950	0.0000460	6	-2.1193260	-0.0110440	0.0000050	6	-2.1165790	-0.0193690	0.0001650
1	2.4752220	-0.5550800	0.8829750	1	-2.4740500	-0.5483110	0.8845330	1	-2.5025150	-0.1257360	1.0083890
1	2.4752730	-0.5555600	-0.8825670	1	-2.5655000	0.9857600	-0.0000740	1	-2.5851070	0.8513660	-0.4460060
1	2.5751800	0.9770390	-0.0002120	1	-2.4740680	-0.5484650	-0.8844210	1	-2.4092830	-0.8919000	-0.5693880
	M2 C	CBS-QB3			M2 C	BS-APNO			Μ	I2 G3	
6	-0.1492760	-1.2416440	0.1830600	6	-0.1574110	-1.2280120	0.1900220	6	-0.1551530	-1.2325270	0.1951300
6	0.6815710	0.0063920	0.4390310	6	0.6836120	0.0079400	0.4547540	6	0.6835270	0.0092230	0.4594380
6	-0.2536920	1.1552460	0.1549810	6	-0.2577760	1.1469470	0.1576080	6	-0.2573180	1.1481060	0.1606530
6	-1.4188330	0.6287560	-0.1820400	6	-1.3989870	0.6079270	-0.1860600	6	-1.3982930	0.6087610	-0.1881440
8	-1.3452150	-0.8022600	-0.1550200	8	-1.3322350	-0.7853810	-0.1583960	8	-1.3317560	-0.7849960	-0.1603980
1	0.9110130	-0.0409230	1.5166180	1	0.9236360	-0.0320510	1.5188300	1	0.9331640	-0.0250440	1.5209740
1	-0.0227870	2.2077000	0.2191990	1	-0.0445030	2.1948110	0.2175250	1	-0.0399470	2.1950730	0.2216700
6	2.0118060	-0.0057190	-0.3358600	6	1.9925310	-0.0095000	-0.3440820	6	1.9883090	-0.0096400	-0.3486250
1	2.5737770	-0.9099290	-0.0978140	1	2.5696150	-0.8930010	-0.0984830	1	2.5664580	-0.8934350	-0.1081970
1	1.8314750	0.0108900	-1.4128800	1	1.7953280	-0.0163360	-1.4112330	1	1.7851730	-0.0146730	-1.4140530
1	2.6187630	0.8644300	-0.0763860	1	2.5883520	0.8683030	-0.1167430	1	2.5876000	0.8660980	-0.1250460
1	-2.3799750	1.0277260	-0.4636120	1	-2.3463620	1.0095070	-0.4761880	1	-2.3448350	1.0084140	-0.4828710
	M3 C	CBS-QB3			M3 C	BS-APNO			Μ	I3 G3	
6	0.6439790	0.1579560	0.0024620	6	0.6439790	0.1579560	0.0024620	6	0.6439790	0.1579560	0.0024620
6	-0.2642690	1.1345250	0.0043940	6	-0.2642690	1.1345250	0.0043940	6	-0.2642690	1.1345250	0.0043940
6	-1.3527320	-1.0005910	-0.0097340	6	-1.3527320	-1.0005910	-0.0097340	6	-1.3527320	-1.0005910	-0.0097340
8	-0.0358480	-1.1155640	-0.0012160	8	-0.0358480	-1.1155640	-0.0012160	8	-0.0358480	-1.1155640	-0.0012160
1	-0.0520920	2.1960150	0.0043090	1	-0.0520920	2.1960150	0.0043090	1	-0.0520920	2.1960150	0.0043090
6	2.1212890	0.0588870	-0.0002950	6	2.1212890	0.0588870	-0.0002950	6	2.1212890	0.0588870	-0.0002950
1	2.4726270	-0.4797900	0.8843310	1	2.4726270	-0.4797900	0.8843310	1	2.4726270	-0.4797900	0.8843310

Table 10: Cartesian coordinates for minima (M1–M9) on the C_5H_6O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	2.4678030	-0.4870240	-0.8824530	1	2.4678030	-0.4870240	-0.8824530	1	2.4678030	-0.4870240	-0.8824530
1	2.5650550	1.0562690	-0.0054050	1	2.5650550	1.0562690	-0.0054050	1	2.5650550	1.0562690	-0.0054050
6	-1.6168070	0.4953470	-0.0077500	6	-1.6168070	0.4953470	-0.0077500	6	-1.6168070	0.4953470	-0.0077500
1	-2.1697440	0.6988660	0.9232880	1	-2.1697440	0.6988660	0.9232880	1	-2.1697440	0.6988660	0.9232880
1	-2.1856170	0.8634390	-0.8487990	1	-2.1856170	0.8634390	-0.8487990	1	-2.1856170	0.8634390	-0.8487990
	M4 C	BS-APNO			Ν	14 G3					
6	0.6573740	0.1104670	0.4573750	6	0.6568900	0.1088130	0.4618080				
6	-0.2090140	1.2888490	0.1939490	6	-0.2068130	1.2916710	0.2001730				
6	-1.4316920	0.6976830	-0.1856940	6	-1.4283190	0.6985240	-0.1877020				
6	-1.2988450	-0.6637620	-0.1646530	6	-1.3000660	-0.6619700	-0.1675370				
8	-0.1373900	-1.0963620	0.1862150	8	-0.1365920	-1.0994860	0.1895520				
1	0.8785540	0.0704110	1.5188170	1	0.8861040	0.0613780	1.5202840				
1	-2.3345090	1.2064250	-0.4609980	1	-2.3298130	1.2084060	-0.4664030				
6	1.9273750	0.0388620	-0.3716220	6	1.9227290	0.0395900	-0.3763490				
1	2.5597510	0.8833120	-0.1289190	1	2.5538970	0.8871790	-0.1434640				
1	2.4620900	-0.8811160	-0.1657860	1	2.4646310	-0.8756760	-0.1713280				
1	1.6922830	0.0772350	-1.4298020	1	1.6798420	0.0709870	-1.4323290				
1	-2.0302340	-1.4179680	-0.3991580	1	-2.0284550	-1.4161480	-0.4055390				
	M5 C	CBS-QB3			M5 C	BS-APNO			Ν	15 G3	
6	1.5424880	0.1460880	0.5420400	6	1.5288190	0.1496570	0.5433010	6	1.5295850	0.1485540	0.5446340
6	0.3640730	0.5686210	0.1949000	6	0.3580180	0.5616530	0.1930950	6	0.3561110	0.5605850	0.1953100
6	-0.8385120	0.9690990	-0.1515840	6	-0.8314760	0.9650180	-0.1561800	6	-0.8342880	0.9661800	-0.1552400
6	-2.0172880	0.0644720	-0.1621670	6	-2.0059590	0.0550690	-0.1608510	6	-2.0068160	0.0579010	-0.1624360
8	-2.0079780	-1.1067240	0.1314010	8	-1.9863410	-1.0909530	0.1332740	8	-1.9851350	-1.0942690	0.1331310
1	1.8108530	0.2111130	1.5958380	1	1.7878120	0.2256820	1.5879310	1	1.7933080	0.2213870	1.5876870
1	-1.0118410	2.0024640	-0.4446110	1	-0.9927700	1.9878020	-0.4534910	1	-0.9949380	1.9892090	-0.4513340
6	2.5680510	-0.4395150	-0.3968000	6	2.5502830	-0.4395180	-0.3954420	6	2.5516140	-0.4373840	-0.3965590
1	3.4926860	0.1450350	-0.3679680	1	3.4644680	0.1459290	-0.3724150	1	3.4648600	0.1489150	-0.3767970
1	2.8162730	-1.4614550	-0.0951590	1	2.7954990	-1.4516570	-0.0894130	1	2.8020870	-1.4488140	-0.0939460
1	2.2015940	-0.4618490	-1.4231670	1	2.1796630	-0.4663530	-1.4119660	1	2.1802840	-0.4651100	-1.4126430
1	-2.9586210	0.5658890	-0.4744730	1	-2.9420500	0.5349420	-0.4703650	1	-2.9417570	0.5335440	-0.4722650
	M6 C	CBS-QB3			M6 C	BS-APNO			Ν	16 G3	
6	-1.7442360	-0.3319760	0.4333050	6	-1.7292250	-0.3340990	0.4339550	6	-1.7315030	-0.3356490	0.4339930
6	-0.5051300	-0.4734280	0.0622870	6	-0.4982040	-0.4651480	0.0648060	6	-0.4992680	-0.4696920	0.0629780

Table 10: Cartesian coordinates for minima (M1–M9) on the C_5H_6O potential energy surface.

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Ζ
6	0.7542570	-0.5860430	-0.2940800	6	0.7473990	-0.5855490	-0.2982960	6	0.7489110	-0.5866010	-0.2990220
6	1.7859190	0.3428240	0.2141530	6	1.7803340	0.3409380	0.2131850	6	1.7783140	0.3408650	0.2143100
8	2.9544920	0.2777440	-0.0871870	8	2.9241950	0.2767620	-0.0862680	8	2.9282830	0.2790080	-0.0855690
1	-2.0686320	-0.8651700	1.3262500	1	-2.0431810	-0.8714520	1.3156420	1	-2.0492420	-0.8695310	1.3156260
1	1.0910280	-1.3655710	-0.9727850	1	1.0654780	-1.3589050	-0.9764200	1	1.0714860	-1.3575800	-0.9769910
6	-2.7765530	0.5049200	-0.2811250	6	-2.7587270	0.5049170	-0.2792620	6	-2.7596110	0.5068870	-0.2785810
1	-3.6171130	-0.1181290	-0.6016320	1	-3.5892800	-0.1160860	-0.6010000	1	-3.5924140	-0.1091250	-0.6024680
1	-3.1764490	1.2718600	0.3890680	1	-3.1532570	1.2635400	0.3899020	1	-3.1539330	1.2665090	0.3888730
1	-2.3546080	0.9960410	-1.1581920	1	-2.3348390	0.9937850	-1.1470780	1	-2.3353800	0.9960490	-1.1457820
1	1.4042910	1.1212330	0.9075460	1	1.4120570	1.1086760	0.9027730	1	1.4121650	1.1067540	0.9032200
	M7 C	CBS-QB3			M7 C	BS-APNO			Μ	17 G3	
6	-1.5501020	0.8521630	0.0041880	6	-1.5501020	0.8521630	0.0041880	6	-1.5501020	0.8521630	0.0041880
6	-0.1994300	1.1927880	0.0053090	6	-0.1994300	1.1927880	0.0053090	6	-0.1994300	1.1927880	0.0053090
6	0.6184300	0.0510780	-0.0028530	6	0.6184300	0.0510780	-0.0028530	6	0.6184300	0.0510780	-0.0028530
8	-0.0439250	-1.0754660	-0.0081910	8	-0.0439250	-1.0754660	-0.0081910	8	-0.0439250	-1.0754660	-0.0081910
1	0.2158820	2.1962770	0.0050550	1	0.2158820	2.1962770	0.0050550	1	0.2158820	2.1962770	0.0050550
6	2.1024020	-0.0494040	-0.0024690	6	2.1024020	-0.0494040	-0.0024690	6	2.1024020	-0.0494040	-0.0024690
1	2.4372130	-0.5801770	0.8930390	1	2.4372130	-0.5801770	0.8930390	1	2.4372130	-0.5801770	0.8930390
1	2.4375530	-0.6224150	-0.8710450	1	2.4375530	-0.6224150	-0.8710450	1	2.4375530	-0.6224150	-0.8710450
1	2.5558060	0.9422340	-0.0245310	1	2.5558060	0.9422340	-0.0245310	1	2.5558060	0.9422340	-0.0245310
6	-1.5206660	-0.6101310	-0.0064930	6	-1.5206660	-0.6101310	-0.0064930	6	-1.5206660	-0.6101310	-0.0064930
1	-1.8952870	-1.0259690	0.9362640	1	-1.8952870	-1.0259690	0.9362640	1	-1.8952870	-1.0259690	0.9362640
1	-2.1035740	-0.9251890	-0.8593450	1	-2.1035740	-0.9251890	-0.8593450	1	-2.1035740	-0.9251890	-0.8593450
	M8 C	CBS-QB3			M8 C	BS-APNO			Μ	18 G3	
6	-2.2823030	-0.4727510	0.0000310	6	-2.2735410	-0.4639860	0.0002960	6	-2.2758370	-0.4642080	0.0003010
1	-2.3957270	-1.1127940	-0.8810010	1	-2.3832040	-1.0967410	-0.8764100	1	-2.3915150	-1.0967120	-0.8754130
1	-2.3959080	-1.1134660	0.8805430	1	-2.3825170	-1.0972860	0.8766870	1	-2.3915410	-1.0975010	0.8754290
1	-3.0557810	0.2933710	0.0002140	1	-3.0402760	0.2976740	0.0008090	1	-3.0411030	0.2989010	0.0006010
6	-0.9150690	0.1861580	0.0004050	6	-0.9100720	0.1874170	-0.0000920	6	-0.9099140	0.1845260	0.0006530
8	-0.7781950	1.3890190	-0.0001170	8	-0.7718660	1.3659350	-0.0001380	8	-0.7720500	1.3692040	-0.0003500
6	0.2477200	-0.7614490	-0.0002420	6	0.2505650	-0.7587480	-0.0003710	6	0.2493370	-0.7587870	-0.0008690
1	0.0366750	-1.8279650	-0.0003160	1	0.0529060	-1.8172370	-0.0008430	1	0.0506710	-1.8170020	-0.0007150
6	1.4912890	-0.3480210	-0.0001140	6	1.4814930	-0.3380100	-0.0000810	6	1.4823240	-0.3370330	-0.0002590
6	2.7160660	0.0803830	0.0000980	6	2.7002120	0.0820840	0.0002550	6	2.7039620	0.0803730	0.0004090

Table 10: Cartesian coordinates for minima (M1–M9) on the C_5H_6O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Ζ
1	3.2450660	0.2707790	0.9287330	1	3.2178990	0.2663780	0.9249960	1	3.2251140	0.2637060	0.9229730
1	3.2450160	0.2720010	-0.9283040	1	3.2181690	0.2671940	-0.9241740	1	3.2255410	0.2657570	-0.9214840
	M9 C	CBS-QB3			M9 Cl	BS-APNO			Ν	19 G3	
6	-0.9753250	1.4063990	0.0000250	6	-0.9883380	1.3966540	-0.0000180	6	-0.9812710	1.3982520	-0.0000220
1	-0.4334720	1.7639680	0.8798620	1	-0.4566130	1.7541040	0.8757140	1	-0.4495030	1.7573600	0.8746800
1	-0.4328720	1.7639010	-0.8794660	1	-0.4563370	1.7541250	-0.8755720	1	-0.4493170	1.7573670	-0.8746060
1	-1.9861330	1.8107460	-0.0003200	1	-1.9971640	1.7845220	-0.0001600	1	-1.9880040	1.7911620	-0.0001170
6	-1.0520410	-0.1072470	0.0000820	6	-1.0476490	-0.1129180	-0.0000130	6	-1.0459190	-0.1122960	-0.0000130
8	-2.1105370	-0.7000130	-0.0001290	8	-2.0794290	-0.7028190	0.0000490	8	-2.0862960	-0.6983710	0.0000610
6	0.2248670	-0.8837880	0.0002770	6	0.2323270	-0.8829280	-0.0000520	6	0.2291340	-0.8864350	-0.0000660
1	0.0979920	-1.9629920	-0.0006260	1	0.1260080	-1.9539640	-0.0000810	1	0.1186560	-1.9568100	-0.0001140
6	1.4230960	-0.3545520	0.0000130	6	1.4145910	-0.3426790	-0.0000190	6	1.4144950	-0.3477260	-0.0000170
6	2.6104840	0.1754220	-0.0000980	6	2.5932440	0.1856980	0.0000340	6	2.5934360	0.1841700	0.0000420
1	3.1263170	0.4032130	0.9277820	1	3.0972180	0.4103530	0.9237850	1	3.0996200	0.4109910	0.9216330
1	3.1259800	0.4038660	-0.9279930	1	3.0972680	0.4104470	-0.9236690	1	3.0996680	0.4111070	-0.9215000

Table 10: Cartesian coordinates for minima (M1–M9) on the C_5H_6O potential energy surface.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2014

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Ζ
	M10	CBS-QB3			M10 C	BS-APNO			М	10 G3	
6	-1.3324220	-0.7272260	0.0005610	6	-1.3273830	-0.7233340	0.0004400	6	-1.3287010	-0.7246340	0.0004940
6	-1.4676890	0.6362810	-0.0003270	6	-1.4647080	0.6353550	-0.0000310	6	-1.4666490	0.6350560	-0.0000630
6	-0.1635750	1.1697930	-0.0000010	6	-0.1564570	1.1654880	-0.0001510	6	-0.1584730	1.1661000	-0.0001330
6	0.7295670	0.0804240	-0.0002570	6	0.7217530	0.0659990	-0.0000750	6	0.7227530	0.0679490	-0.0000860
8	-0.0215460	-1.0868460	-0.0003390	8	-0.0246150	-1.0759610	-0.0004230	8	-0.0235530	-1.0771200	-0.0004650
1	-2.0432010	-1.5365440	0.0008710	1	-2.0379940	-1.5206550	0.0005480	1	-2.0364390	-1.5242330	0.0006100
1	-2.3991490	1.1803090	-0.0000620	1	-2.3888520	1.1754670	0.0000370	1	-2.3904620	1.1761030	0.0000170
1	0.1232930	2.2092020	0.0005130	1	0.1367500	2.1948130	-0.0002890	1	0.1321550	2.1964380	-0.0002850
6	2.1008390	-0.0065140	-0.0000410	6	2.0958340	-0.0067430	0.0002200	6	2.0980010	-0.0059690	0.0002260
1	2.5930190	-0.9683850	0.0002300	1	2.5944370	-0.9565750	-0.0001670	1	2.5976950	-0.9547830	-0.0001200
1	2.6980770	0.8936340	0.0015420	1	2.6783410	0.8940540	0.0008360	1	2.6838850	0.8924310	0.0008700
	M11 0	CBS-QB3			M11 C	BS-APNO			М	11 G3	
6	1.0458270	0.9794320	0.0000230	6	1.0363760	0.9756390	0.0002600	6	1.0421120	0.9746780	0.0000120
6	-0.3502970	1.1878600	-0.0000420	6	-0.3644170	1.1868540	-0.0003380	6	-0.3590260	1.1869810	0.0000610
6	1.6998950	-0.3114300	0.0000280	6	1.7153310	-0.2996480	0.0002400	6	1.7186470	-0.2997160	0.0000900
6	-1.3119050	0.2545460	0.0000100	6	-1.3340720	0.2535700	-0.0002260	6	-1.3317590	0.2526390	-0.0003200
6	-2.3065020	-0.5748460	0.0000150	6	-2.3219820	-0.5951750	0.0002900	6	-2.3310860	-0.5886280	0.0001550
8	1.1236850	-1.3892690	-0.0000280	8	1.1635440	-1.3753970	-0.0003360	8	1.1595060	-1.3799980	-0.0001290
1	2.8085010	-0.2659230	0.0001020	1	2.8058990	-0.2490850	0.0008100	1	2.8072580	-0.2567090	0.0005300
1	1.6855050	1.8560540	0.0000170	1	1.6634380	1.8503450	0.0005170	1	1.6695240	1.8487180	-0.0000470
1	-2.7278310	-0.9561020	-0.9271160	1	-2.7359220	-0.9707580	-0.9213430	1	-2.7511390	-0.9617730	-0.9192580
1	-2.7281040	-0.9557420	0.9271710	1	-2.7364080	-0.9690710	0.9223920	1	-2.7507420	-0.9612290	0.9199670
1	-0.6896490	2.2224950	-0.0001550	1	-0.6927790	2.2142990	-0.0010370	1	-0.6842830	2.2152550	-0.0001470
	M12 0	CBS-QB3			M12 C	BS-APNO			Μ	12 G3	
6	0.7508650	0.8407160	0.0000020	6	-0.7591190	0.8340430	0.0000020	6	0.7604260	0.8355370	0.0000000
6	-0.6449070	1.0584230	-0.0000030	6	0.6365160	1.0699380	-0.0000010	6	-0.6353040	1.0749530	-0.0000010
6	1.3829680	-0.4580290	-0.0000050	6	-1.3752070	-0.4689330	0.0000020	6	1.3704700	-0.4687950	-0.0000020
6	-1.6002290	0.1182860	-0.0000010	6	1.6007170	0.1269170	-0.0000010	6	-1.6020690	0.1304510	0.0000000
6	-2.5497260	-0.7655430	0.0000030	6	2.5481490	-0.7686170	0.0000000	6	-2.5473990	-0.7723120	0.0000010
8	2.5957660	-0.6134040	0.0000040	8	-2.5791350	-0.6106810	-0.0000020	8	2.5806450	-0.6147030	0.0000020
1	0.6996370	-1.3304920	-0.0000200	1	-0.7209560	-1.3398310	0.0000070	1	0.7171600	-1.3378110	-0.0000080
1	1.4160230	1.6970750	0.0000130	1	-1.4276680	1.6760630	0.0000000	1	1.4306000	1.6755570	0.0000040
1	-2.9646500	-1.1573080	-0.9266060	1	2.9554100	-1.1538250	0.9213970	1	-2.9549730	-1.1608810	-0.9191830

Table 11: Cartesian coordinates for minima (M10–M16) on the C₅H₅O potential energy surface.

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Z
1	-2.9646550	-1.1572930	0.9266170	1	2.9554060	-1.1538310	-0.9213970	1	-2.9549730	-1.1608800	0.9191850
1	-0.9863070	2.0921320	-0.0000070	1	0.9645480	2.0967820	-0.0000010	1	-0.9597170	2.1026410	-0.0000020
	M13 (CBS-QB3			M13 C	BS-APNO			Μ	13 G3	
6	0.8084350	0.9761030	-0.0002270	6	0.8261090	0.9746950	-0.0002540	6	-0.8228150	0.9790970	0.0003050
6	-0.6180350	0.8355780	-0.0000100	6	-0.6119170	0.8343820	0.0000520	6	0.6145460	0.8351330	-0.0000440
6	1.6990600	-0.0120340	0.0007130	6	1.6977400	-0.0182690	0.0001690	6	-1.6984950	-0.0152440	-0.0003110
6	-1.3265630	-0.3788430	0.0001040	6	-1.3145360	-0.3813990	-0.0001890	6	1.3154610	-0.3830680	0.0002360
6	-2.6875460	-0.4937010	-0.0000710	6	-2.6888880	-0.4818240	0.0001000	6	2.6912420	-0.4851190	-0.0001280
8	2.4893550	-0.8640170	-0.0003670	8	2.4595140	-0.8657760	0.0000790	8	-2.4682570	-0.8680170	-0.0000450
1	-0.7437290	-1.2996580	0.0003770	1	-0.7452840	-1.2988140	-0.0006200	1	0.7443960	-1.2987090	0.0007640
1	1.2542730	1.9654780	-0.0000800	1	1.2764010	1.9502780	-0.0001730	1	-1.2684420	1.9569800	0.0002950
1	-3.3274660	0.3821230	-0.0003820	1	-3.3137920	0.3944240	0.0005240	1	3.3179110	0.3891730	-0.0006460
1	-3.1710920	-1.4617510	0.0000690	1	-3.1759890	-1.4392990	-0.0001040	1	3.1793990	-1.4415590	0.0001140
1	-1.1789340	1.7633300	-0.0001030	1	-1.1684970	1.7541130	0.0004700	1	1.1731500	1.7534660	-0.0005200
	M14 (CBS-QB3									
6	-0.7524310	0.8180140	-0.0000060								
6	0.5965560	0.7823360	-0.0000240								
6	-1.5707220	-0.3969840	-0.0000030								
6	1.4159970	-0.4136160	-0.0000160								
6	2.7537090	-0.3738060	0.0000770								
8	-2.7552170	-0.4895590	-0.0000430								
1	0.8944500	-1.3652250	-0.0000210								
1	-1.2846510	1.7680530	-0.0000390								
1	3.2938760	0.5677790	0.0001400								
1	3.3481710	-1.2792960	0.0001920								
1	1.1312430	1.7294960	-0.0000920								
	M15 0	CBS-QB3			M15 C	BS-APNO			Μ	15 G3	
6	0.5821270	1.1031570	-0.0000600	6	-0.6140650	1.0959450	0.0003460	6	-0.6094410	1.1022370	0.0002090
6	-0.8497870	1.1072100	0.0001670	6	0.8310510	1.1124850	-0.0001060	6	0.8356580	1.1127720	-0.0001370
6	1.4148130	0.0660920	-0.0001530	6	-1.4237550	0.0530870	0.0000520	6	-1.4229350	0.0578930	0.0000290
6	-1.7274950	0.0056730	0.0002530	6	1.7276740	0.0303580	-0.0002650	6	1.7290380	0.0261670	-0.0002500
6	-1.4139900	-1.3244250	0.0000660	6	1.4346210	-1.3172480	0.0001560	6	1.4315930	-1.3219360	0.0001350
8	2.1901550	-0.7990160	-0.0002650	8	-2.1592370	-0.8166780	-0.0001750	8	-2.1667480	-0.8172000	-0.0000380
1	-2.7829990	0.2656040	0.0004930	1	2.7699800	0.3032440	-0.0007600	1	2.7721100	0.2946160	-0.0006760

Table 11: Cartesian coordinates for minima (M10–M16) on the C₅H₅O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	1.1076320	2.0539120	-0.0002440	1	-1.1457540	2.0308100	0.0007280	1	-1.1355280	2.0402500	0.0007610
1	-0.3957960	-1.6943850	-0.0002120	1	0.4330930	-1.7055680	0.0007360	1	0.4296310	-1.7076320	0.0006540
1	-2.1934730	-2.0754300	0.0001730	1	2.2278550	-2.0420610	-0.0000410	1	2.2208240	-2.0504140	-0.0000330
1	-1.2906100	2.0961900	0.0002720	1	1.2555650	2.0992340	-0.0003510	1	1.2634730	2.0979820	-0.0003160
	M16 0	CBS-QB3			M16 C	BS-APNO			Μ	16 G3	
6	0.0508700	1.1958500	-0.0000240	6	0.0489500	1.1958930	-0.0000540	6	0.0481890	1.1963190	-0.0000530
6	1.3786630	0.7524340	-0.0002170	6	1.3773760	0.7515260	-0.0001520	6	1.3783260	0.7531590	-0.0001630
6	-0.8460370	0.0426790	0.0001160	6	-0.8402900	0.0378080	0.0001050	6	-0.8385310	0.0378510	0.0000770
6	1.4414030	-0.6304100	-0.0000500	6	1.4340840	-0.6357750	-0.0001450	6	1.4358800	-0.6352450	-0.0001430
6	0.0596540	-1.2072060	-0.0000050	6	0.0426520	-1.2086610	0.0000490	6	0.0442550	-1.2099470	0.0000470
8	-2.0638150	0.0408940	0.0001950	8	-2.0392940	0.0502240	0.0001930	8	-2.0437070	0.0496640	0.0002180
1	2.3516130	-1.2148340	-0.0001710	1	2.3326680	-1.2217860	-0.0002460	1	2.3337140	-1.2220240	-0.0002250
1	-0.2936610	2.2205110	-0.0000270	1	-0.2957250	2.2114640	-0.0000630	1	-0.2973240	2.2112480	-0.0000510
1	-0.1498910	-1.8277050	-0.8784900	1	-0.1681520	-1.8158930	-0.8756980	1	-0.1662080	-1.8187580	-0.8745220
1	-0.1497250	-1.8275990	0.8785970	1	-0.1679420	-1.8157990	0.8759140	1	-0.1660100	-1.8186610	0.8747330
1	2.2448560	1.4023870	-0.0003820	1	2.2368650	1.3954780	-0.0002620	1	2.2367720	1.3980570	-0.0002680

Table 11: Cartesian coordinates for minima (M10–M16) on the C₅H₅O potential energy surface.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2014

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Z	
	M17 CBS-QB3				M17 C	BS-APNO		M17 G3				
6	0.694148	0.063394	0.463505	6	0.690391	0.049158	0.463494	6	0.691269	0.049414	0.466486	
6	-0.247967	1.196513	0.172534	6	-0.250048	1.190761	0.171930	6	-0.250555	1.191043	0.176299	
6	-1.352862	-0.725611	-0.166626	6	-1.341770	-0.730710	-0.165511	6	-1.341800	-0.730899	-0.168059	
8	-0.110917	-1.132565	0.214200	8	-0.099322	-1.113380	0.212620	8	-0.098253	-1.114474	0.216589	
1	0.013679	2.240029	0.258207	1	0.009082	2.227102	0.259276	1	0.009801	2.227130	0.262696	
6	1.955091	0.002605	-0.397924	6	1.944226	0.009632	-0.396748	6	1.941763	0.010488	-0.400686	
1	2.523542	-0.904113	-0.178365	1	2.519467	-0.884164	-0.180159	1	2.519632	-0.881964	-0.188011	
1	1.690370	0.007862	-1.457269	1	1.681198	0.007103	-1.449239	1	1.673079	0.007441	-1.451046	
1	2.589436	0.869178	-0.191637	1	2.565750	0.877797	-0.194977	1	2.564656	0.878081	-0.204111	
6	-1.464414	0.653252	-0.203676	6	-1.468963	0.645503	-0.203775	6	-1.468911	0.645870	-0.205870	
1	-2.356697	1.192835	-0.485870	1	-2.358415	1.175280	-0.480869	1	-2.356732	1.177065	-0.485829	
1	-2.059750	-1.508351	-0.390535	1	-2.039259	-1.510374	-0.385594	1	-2.035068	-1.513442	-0.390189	
1	0.982784	0.022163	1.524994	1	0.973743	0.028224	1.514262	1	0.980070	0.025979	1.514758	
	M18 CBS-QB3			M18 CBS-APNO				M18 G3				
6	1.726596	-0.103753	0.000004	6	1.745185	-0.129551	-0.000046	6	1.746193	-0.128608	-0.000031	
6	0.882559	1.075962	0.000014	6	0.912605	1.057046	-0.000078	6	0.915576	1.057033	-0.000049	
6	-0.514366	1.260337	-0.000008	6	-0.487674	1.259043	0.000050	6	-0.485219	1.260663	0.000033	
6	-1.593123	0.401671	-0.000008	6	-1.590851	0.426368	0.000066	6	-1.591012	0.428784	0.000043	
8	1.392001	-1.280607	-0.000015	8	1.386686	-1.281279	0.000127	8	1.382886	-1.286068	0.000083	
1	1.459353	1.997601	0.000029	1	1.490836	1.966710	-0.000162	1	1.494104	1.965867	-0.000105	
1	-0.795583	2.311650	-0.000024	1	-0.743279	2.307012	0.000135	1	-0.738813	2.308512	0.000087	
6	-1.655861	-1.084952	0.000016	6	-1.712562	-1.067134	-0.000101	6	-1.714417	-1.065314	-0.000065	
1	-2.223257	-1.428926	0.874816	1	-2.279645	-1.383946	0.873283	1	-2.280843	-1.384673	0.872330	
1	-2.223097	-1.428957	-0.874878	1	-2.280339	-1.383682	-0.873127	1	-2.281252	-1.384503	-0.872255	
1	-0.673964	-1.548787	0.000097	1	-0.762304	-1.570100	-0.000526	1	-0.764172	-1.568364	-0.000320	
1	-2.561640	0.898470	-0.000032	1	-2.534557	0.949598	0.000221	1	-2.534044	0.951673	0.000139	
1	2.807344	0.148214	0.000011	1	2.815580	0.090003	-0.000182	1	2.815202	0.084684	-0.000122	
	M19 CBS-QB3				M19 CBS-APNO				M19 G3			
6	-1.362396	-0.397532	0.000000	6	-1.358266	-0.406627	0.000000	6	1.355693	-0.406355	0.000000	
6	-0.686288	0.884432	0.000000	6	-0.700845	0.878312	0.000000	6	0.701486	0.878323	0.000000	
6	0.686260	1.171020	0.000000	6	0.676136	1.176077	0.000000	6	-0.676560	1.177171	0.000000	
6	1.791626	0.342982	0.000000	6	1.790364	0.351842	0.000000	6	-1.791673	0.352170	0.000000	
8	-2.582817	-0.489620	0.000000	8	-2.569306	-0.491702	0.000000	8	2.573434	-0.492179	0.000000	

Table 12: Cartesian coordinates for minima (M17–M27) on the C_5H_7O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	-1.373234	1.725857	0.000000	1	-1.384630	1.709802	0.000000	1	1.385009	1.709222	0.000000
1	0.918794	2.233304	0.000000	1	0.896492	2.231057	0.000000	1	-0.896330	2.231787	0.000000
6	1.833733	-1.153485	0.000000	6	1.839773	-1.152210	0.000000	6	-1.840792	-1.152410	0.000000
1	2.863516	-1.513267	0.000001	1	2.868579	-1.491547	0.000001	1	-2.868867	-1.493478	-0.000001
1	1.333157	-1.574054	0.879402	1	1.356341	-1.572125	0.877985	1	-1.357869	-1.573616	-0.877193
1	1.333157	-1.574055	-0.879401	1	1.356342	-1.572125	-0.877985	1	-1.357870	-1.573616	0.877193
1	2.753713	0.846176	0.000000	1	2.740701	0.857579	0.000000	1	-2.742377	0.856029	0.000000
1	-0.744176	-1.311502	0.000000	1	-0.762348	-1.313385	0.000000	1	0.761903	-1.312285	0.000000
	M20 C	CBS-QB3			M20 C	BS-APNO					
6	-1.607064	-0.402419	0.058716	6	-1.620222	-0.401056	0.064440				
6	-0.835404	0.833152	-0.133135	6	-0.829677	0.832191	-0.134320				
6	0.483614	0.901161	0.099296	6	0.477739	0.896573	0.096338				
6	1.371438	-0.208974	0.568996	6	1.379328	-0.204436	0.576015				
8	-2.771572	-0.573980	-0.097690	8	-2.756726	-0.573330	-0.098897				
1	-1.391173	1.704279	-0.478869	1	-1.378017	1.692472	-0.482440				
1	0.976203	1.856661	-0.076517	1	0.962717	1.844383	-0.084457				
6	2.517468	-0.495020	-0.417042	6	2.505280	-0.496523	-0.421884				
1	3.128884	0.395649	-0.589011	1	3.103896	0.389882	-0.612654				
1	3.170812	-1.278836	-0.027009	1	3.164240	-1.266503	-0.034557				
1	2.128173	-0.827631	-1.382275	1	2.103845	-0.840939	-1.369651				
1	1.801318	0.083943	1.535573	1	1.814845	0.109777	1.522568				
1	0.778033	-1.109624	0.738644	1	0.807595	-1.102924	0.768829				
	M21 C	CBS-QB3			M21 C	BS-APNO			M2	21 G3	
6	-1.953476	-0.023528	0.000008	6	-1.973461	-0.014542	0.000003	6	-1.974875	-0.011758	0.000003
6	-0.974808	1.046139	-0.000182	6	-0.974731	1.034202	-0.000182	6	-0.977059	1.035043	-0.000188
6	0.423110	0.909204	-0.000161	6	0.428271	0.887592	-0.000157	6	0.426729	0.887746	-0.000162
6	1.130817	-0.269360	0.000044	6	1.147810	-0.287532	0.000047	6	1.147879	-0.288423	0.000052
8	-1.711650	-1.223995	0.000218	8	-1.749153	-1.201215	0.000214	8	-1.747169	-1.204969	0.000222
1	-1.384144	2.052012	-0.000358	1	-1.365329	2.037871	-0.000358	1	-1.366560	2.038741	-0.000371
1	0.995686	1.835678	-0.000326	1	0.987841	1.810286	-0.000320	1	0.986112	1.809897	-0.000330
1	-3.006934	0.325108	-0.000051	1	-3.008614	0.334852	-0.000059	1	-3.009235	0.332159	-0.000060
6	2.619286	-0.342267	0.000056	6	2.646473	-0.333120	0.000058	6	2.647537	-0.331726	0.000058
1	2.981289	-0.894776	0.875862	1	3.015191	-0.865174	0.874136	1	3.019875	-0.861826	0.873295
1	2.981288	-0.895130	-0.875526	1	3.015193	-0.865540	-0.873795	1	3.019874	-0.862144	-0.872986

Table 12: Cartesian coordinates for minima (M17–M27) on the C_5H_7O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z	
1	3.083658	0.646574	-0.000142	1	3.081479	0.660750	-0.000149	1	3.081375	0.662476	-0.000123	
1	0.572788	-1.198634	0.000208	1	0.621295	-1.222922	0.000212	1	0.624642	-1.224842	0.000223	
	M22 C	22 CBS-QB3 M22 CBS-				BS-APNO			M2	22 G3		
6	-1.701467	-0.405909	-0.000059	6	-1.701115	-0.413821	-0.000050	6	-1.700169	-0.414677	-0.000051	
6	-0.831706	0.750007	-0.000020	6	-0.841276	0.744298	-0.000025	6	-0.842097	0.742824	-0.000024	
6	0.572561	0.739602	0.000012	6	0.568596	0.739123	0.000015	6	0.568880	0.738858	0.000015	
6	1.404223	-0.355677	0.000053	6	1.402759	-0.360400	0.000042	6	1.404928	-0.361073	0.000043	
8	-2.921276	-0.324965	-0.000076	8	-2.908945	-0.317101	-0.000083	8	-2.914709	-0.315499	-0.000083	
1	-1.348789	1.704149	-0.000021	1	-1.354729	1.689775	-0.000039	1	-1.355092	1.687948	-0.000037	
1	1.055169	1.715488	0.000009	1	1.039376	1.709369	0.000025	1	1.039062	1.708772	0.000024	
1	-1.213989	-1.401465	-0.000083	1	-1.242780	-1.401984	-0.000040	1	-1.246365	-1.402591	-0.000045	
6	2.893846	-0.272702	0.000078	6	2.899810	-0.267663	0.000084	6	2.902713	-0.266838	0.000084	
1	3.315945	-0.778992	0.876823	1	3.318419	-0.760210	0.874674	1	3.323915	-0.757660	0.873859	
1	3.315975	-0.779021	-0.876637	1	3.318468	-0.760220	-0.874478	1	3.323962	-0.757673	-0.873662	
1	3.244566	0.761507	0.000066	1	3.235280	0.763609	0.000087	1	3.237662	0.764394	0.000085	
1	0.976596	-1.353871	0.000070	1	0.984882	-1.352758	0.000034	1	0.988995	-1.353762	0.000038	
	M23 CBS-QB3				M23 C	BS-APNO		M23 G3				
6	-1.936611	0.544046	0.000082	6	-1.940558	0.544370	-0.000079	6	-1.939663	0.548146	-0.000090	
6	-0.486302	0.583157	0.000083	6	-0.494620	0.573280	0.000002	6	-0.495554	0.575588	-0.000007	
6	0.276098	-0.590553	0.000041	6	0.275252	-0.603115	-0.000015	6	0.273734	-0.602362	-0.000021	
6	1.647267	-0.683398	0.000052	6	1.651876	-0.684002	0.000047	6	1.652018	-0.685172	0.000047	
8	-2.603201	-0.481603	-0.000341	8	-2.598198	-0.471513	-0.000160	8	-2.599411	-0.474669	-0.000142	
1	-0.016464	1.561068	0.000127	1	-0.028266	1.541889	0.000078	1	-0.026894	1.542754	0.000071	
1	-0.296893	-1.513472	0.000005	1	-0.277487	-1.526174	-0.000079	1	-0.279270	-1.524717	-0.000087	
6	2.628566	0.441901	0.000126	6	2.632181	0.452607	0.000158	6	2.634090	0.450923	0.000160	
1	3.283970	0.379142	0.876994	1	3.275834	0.396274	0.874770	1	3.278437	0.396713	0.873929	
1	3.284523	0.378780	-0.876296	1	3.276523	0.395833	-0.873913	1	3.279139	0.396262	-0.873057	
1	2.157174	1.424713	-0.000217	1	2.155412	1.424246	-0.000278	1	2.158648	1.423060	-0.000284	
1	2.075784	-1.682210	0.000037	1	2.081924	-1.672140	0.000059	1	2.082339	-1.672558	0.000060	
1	-2.436597	1.533880	-0.000228	1	-2.443146	1.513343	-0.000038	1	-2.444857	1.513109	-0.000026	
	M24 C	CBS-QB3			M24 C	BS-APNO			M2	24 G3		
6	1.915903	0.478725	0.000217	6	1.915226	0.471064	0.000076	6	1.914635	0.474571	0.000039	
6	0.414878	0.674455	0.000358	6	0.419555	0.671708	0.000156	6	0.418330	0.674913	0.000162	
6	-0.378043	-0.591705	0.000269	6	-0.375409	-0.601273	0.000129	6	-0.373105	-0.601190	0.000134	

Table 12: Cartesian coordinates for minima (M17–M27) on the C_5H_7O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z	
6	-1.767186	-0.646929	-0.000078	6	-1.768776	-0.649802	-0.000091	6	-1.767449	-0.651492	-0.000088	
8	2.476453	-0.586450	-0.000296	8	2.466710	-0.573805	0.000046	8	2.466893	-0.576586	0.000050	
1	0.176924	1.311729	-0.866748	1	0.186292	1.292948	-0.865903	1	0.181132	1.295649	-0.864853	
1	0.194366	-1.511263	0.000490	1	0.181058	-1.519310	0.000310	1	0.185027	-1.517829	0.000319	
6	-2.630816	0.428706	-0.000388	6	-2.625810	0.440815	-0.000312	6	-2.626632	0.438957	-0.000309	
1	-2.276086	1.452817	-0.000376	1	-2.264426	1.453660	-0.000328	1	-2.267551	1.452077	-0.000322	
1	-3.703344	0.283025	-0.000671	1	-3.691403	0.302435	-0.000474	1	-3.691958	0.301993	-0.000475	
1	-2.209324	-1.640373	-0.000116	1	-2.215676	-1.630646	-0.000082	1	-2.213774	-1.632246	-0.000081	
1	2.500314	1.424662	-0.000176	1	2.495372	1.403436	0.000042	1	2.496036	1.402968	0.000068	
1	0.177109	1.311488	0.867699	1	0.186386	1.292845	0.866319	1	0.181274	1.295517	0.865317	
	M25 C	CBS-QB3			M25 C	BS-APNO		M25 G3				
6	1.554961	-0.106496	-0.305356	6	1.520630	-0.093199	-0.354365	6	1.504298	-0.091369	-0.363666	
6	0.584749	-0.871568	0.589720	6	0.570490	-0.835555	0.561717	6	0.570474	-0.859317	0.547743	
6	-0.717329	-1.103779	-0.126930	6	-0.766515	-1.092466	-0.090720	6	-0.778335	-1.097497	-0.089087	
6	-1.711245	-0.138668	-0.270081	6	-1.761380	-0.126942	-0.244165	6	-1.758017	-0.114106	-0.236513	
8	1.884119	1.036644	-0.123586	8	2.058298	0.921323	-0.073895	8	2.048164	0.920341	-0.060898	
1	0.448564	-0.290521	1.505364	1	0.473771	-0.265805	1.478409	1	0.488931	-0.312417	1.479767	
1	-0.875329	-2.076258	-0.579746	1	-0.956911	-2.081237	-0.469473	1	-0.987732	-2.084579	-0.460803	
6	-1.663693	1.160460	0.190719	6	-1.683440	1.198648	0.160841	6	-1.651127	1.212313	0.163288	
1	-0.792392	1.560497	0.694379	1	-0.804491	1.605202	0.626722	1	-0.761034	1.604081	0.619206	
1	-2.497248	1.833172	0.034515	1	-2.510118	1.866320	0.001878	1	-2.465015	1.896305	0.011078	
1	-2.610086	-0.450413	-0.797206	1	-2.673628	-0.447370	-0.720911	1	-2.680537	-0.418812	-0.702744	
1	1.927349	-0.676311	-1.184126	1	1.689492	-0.563569	-1.332031	1	1.657830	-0.530919	-1.354694	
1	1.041532	-1.833007	0.847073	1	1.036799	-1.787043	0.806720	1	1.038495	-1.816528	0.764795	
	M26 C	CBS-QB3			M26 C	BS-APNO	M26 G3					
6	-1.616681	0.007683	0.121307	6	-1.623473	0.031808	0.159440	6	-1.623094	0.027820	0.157885	
6	-0.792690	1.097151	0.208097	6	-0.772057	1.089344	0.228276	6	-0.775851	1.091589	0.227530	
6	0.579264	1.226623	-0.122275	6	0.602680	1.198163	-0.166291	6	0.599452	1.203088	-0.162608	
6	1.588218	0.226847	-0.211644	6	1.622279	0.210994	-0.206369	6	1.618100	0.213091	-0.208322	
8	-1.319315	-1.227307	-0.323796	8	-1.381375	-1.189936	-0.345734	8	-1.371425	-1.195172	-0.346572	
1	-1.308023	2.012742	0.482567	1	-1.235724	2.004531	0.555825	1	-1.243508	2.006101	0.550534	
1	0.911393	2.239485	-0.330844	1	0.919884	2.193994	-0.427862	1	0.916756	2.199038	-0.422747	
6	1.610125	-1.014487	0.355830	6	1.623833	-1.035510	0.375820	6	1.621467	-1.033141	0.377437	
1	2.460879	-1.668935	0.213313	1	2.488881	-1.668045	0.292288	1	2.482218	-1.670053	0.288479	

Table 12: Cartesian coordinates for minima (M17–M27) on the C_5H_7O potential energy surface.
At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	0.841818	-1.358627	1.038438	1	0.804285	-1.400472	0.966363	1	0.809284	-1.392269	0.980699
1	-0.376466	-1.280765	-0.548418	1	-0.543078	-1.217235	-0.774090	1	-0.521073	-1.218573	-0.765202
1	2.479410	0.525832	-0.760641	1	2.531750	0.515842	-0.699146	1	2.523759	0.513896	-0.709685
1	-2.663906	0.085824	0.388063	1	-2.634574	0.122076	0.507233	1	-2.636478	0.108553	0.498966
	M27 C	CBS-QB3			M27 Cl	BS-APNO			M2	27 G3	
6	0.782089	0.002682	0.443721	6	0.784309	-0.008014	0.434208	6	0.784970	-0.008684	0.435124
6	-0.120199	-1.186992	0.236486	6	-0.130027	-1.190319	0.213637	6	-0.130378	-1.191075	0.215695
6	-1.388179	-0.777402	-0.150607	6	-1.403052	-0.765980	-0.146259	6	-1.403851	-0.766519	-0.146683
6	-1.475193	0.607567	-0.203118	6	-1.469100	0.623876	-0.188319	6	-1.469027	0.624396	-0.190107
8	1.950993	-0.030747	-0.385432	8	1.938320	-0.045563	-0.367616	8	1.938565	-0.046172	-0.369547
1	0.218592	-2.207260	0.357752	1	0.195051	-2.208165	0.322010	1	0.194726	-2.208585	0.324885
1	-2.207144	-1.449235	-0.379672	1	-2.227799	-1.421063	-0.360803	1	-2.228114	-1.421524	-0.362298
6	-0.153953	1.223036	0.169901	6	-0.127512	1.218966	0.162064	6	-0.127949	1.219835	0.164293
1	-0.241922	1.876703	1.045688	1	-0.192099	1.872351	1.028016	1	-0.192814	1.870998	1.031705
1	0.271642	1.839578	-0.630421	1	0.284902	1.814134	-0.648870	1	0.286390	1.818501	-0.642707
1	1.656003	-0.238514	-1.279399	1	1.684591	-0.174457	-1.264999	1	1.680187	-0.171220	-1.273251
1	-2.358169	1.173736	-0.468515	1	-2.339906	1.201029	-0.436054	1	-2.337911	1.203171	-0.439846
1	1.185667	0.037623	1.459724	1	1.160998	0.009505	1.449633	1	1.166427	0.010313	1.447956

Table 12: Cartesian coordinates for minima (M17–M27) on the C_5H_7O potential energy surface.

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Z
	M28 C	CBS-QB3			M28 CI	BS-APNO			M2	28 G3	
6	-0.676700	0.052177	-0.231132	6	-0.672554	0.045880	-0.281354	6	-0.673156	0.047103	-0.282951
6	0.243995	1.226897	-0.040132	6	0.242515	1.227290	-0.051000	6	0.244811	1.228336	-0.054865
6	1.368914	-0.783457	0.053404	6	1.349728	-0.776044	0.062854	6	1.350172	-0.778038	0.064893
8	0.043188	-1.130443	-0.064627	8	0.045118	-1.118901	-0.080989	8	0.044024	-1.120334	-0.086055
1	0.194864	1.945397	-0.871091	1	0.213140	1.933094	-0.878352	1	0.221042	1.929644	-0.886418
6	-2.120132	-0.023611	0.099908	6	-2.104398	-0.024237	0.125608	6	-2.104799	-0.023320	0.129540
1	-2.561227	-0.940599	-0.298738	1	-2.575729	-0.908049	-0.290029	1	-2.577420	-0.907976	-0.282048
1	-2.301318	-0.016851	1.188691	1	-2.205273	-0.068678	1.211588	1	-2.206218	-0.064273	1.214567
1	-2.657473	0.827868	-0.325474	1	-2.640147	0.850973	-0.227019	1	-2.643618	0.849066	-0.224233
6	1.581247	0.531113	0.065402	6	1.570175	0.521102	0.084722	6	1.570454	0.520651	0.089777
1	2.540336	1.017560	0.153099	1	2.525552	0.992234	0.194812	1	2.523894	0.995093	0.203289
1	2.051083	-1.617531	0.115548	1	2.032481	-1.597388	0.141589	1	2.028730	-1.602133	0.145311
1	0.004287	1.808989	0.870281	1	-0.023760	1.785078	0.850344	1	-0.023495	1.794868	0.839612
	M29 C	CBS-QB3			M29 CI	BS-APNO			M 2	29 G3	
6	0.793325	0.181622	-0.031208	6	0.802679	0.187293	-0.052225	6	0.801326	0.184902	-0.050540
6	-0.208657	-0.966492	-0.076408	6	-0.211858	-0.941552	-0.116216	6	-0.211410	-0.946786	-0.110115
6	-1.667507	-0.599221	0.019711	6	-1.673054	-0.589248	-0.013616	6	-1.672959	-0.591067	-0.017931
6	-2.182913	0.602353	0.066487	6	-2.209979	0.606656	0.174977	6	-2.206811	0.609788	0.176357
8	0.466914	1.342885	-0.072598	8	0.515237	1.331090	-0.161806	8	0.509411	1.333132	-0.161741
1	-0.024850	-1.516517	-1.011291	1	-0.032280	-1.461364	-1.058277	1	-0.027947	-1.478207	-1.044629
1	-2.341135	-1.464768	0.047598	1	-2.340327	-1.439475	-0.098480	1	-2.339409	-1.439717	-0.112890
1	0.053599	-1.683394	0.713389	1	0.040408	-1.668135	0.654676	1	0.036694	-1.666369	0.668658
6	2.252895	-0.231025	0.077685	6	2.238099	-0.251620	0.153314	6	2.240133	-0.247671	0.150198
1	2.490904	-1.055125	-0.600311	1	2.486178	-1.099565	-0.477644	1	2.502784	-1.066291	-0.512588
1	2.890996	0.625883	-0.133750	1	2.903437	0.574500	-0.056109	1	2.898924	0.591519	-0.024001
1	2.454653	-0.580340	1.096061	1	2.370672	-0.562399	1.186698	1	2.375181	-0.599184	1.169562
1	-3.182342	1.007758	0.131481	1	-3.225302	0.938554	0.266177	1	-3.223188	0.938197	0.261998
	M30 C	CBS-QB3			M30 CI	BS-APNO			M3	30 G3	
6	-1.292050	1.207644	0.381865	6	-1.395692	1.156076	0.322749	6	-1.391202	1.161340	0.314752
6	-0.875782	-0.194859	-0.017768	6	-0.856020	-0.214350	-0.021467	6	-0.854749	-0.214156	-0.016809
6	0.345428	-0.784004	0.690204	6	0.350145	-0.700746	0.767974	6	0.351015	-0.697456	0.775204
6	1.670914	-0.205655	0.234506	6	1.663277	-0.110932	0.301102	6	1.661855	-0.100469	0.308001
6	1.868858	0.645439	-0.737132	6	1.854201	0.578662	-0.812474	6	1.851243	0.559691	-0.828606

Table 13: Cartesian coordinates for minima (M28–M35) on the C_5H_7O potential energy surface.

At. No.	X	Y	Ζ	At. No.	X	Y	Z	At. No.	Х	Y	Ζ
1	2.698546	1.144884	-1.212852	1	2.704248	1.033097	-1.279586	1	2.701935	1.013273	-1.294368
1	2.541323	-0.578131	0.788453	1	2.515192	-0.309021	0.939873	1	2.507562	-0.265489	0.962663
1	0.251784	-0.630803	1.772999	1	0.213931	-0.457971	1.819813	1	0.212009	-0.456988	1.826836
1	0.340966	-1.862683	0.509106	1	0.388373	-1.781264	0.679891	1	0.392016	-1.777913	0.688460
8	-1.492080	-0.840688	-0.831949	8	-1.363865	-0.898507	-0.846568	8	-1.366638	-0.905831	-0.840979
1	-2.046609	1.576560	-0.311472	1	-2.085216	1.479529	-0.444855	1	-2.093810	1.471901	-0.446033
1	-0.435750	1.884867	0.407936	1	-0.596222	1.878742	0.439074	1	-0.591516	1.887519	0.402400
1	-1.717825	1.179421	1.391376	1	-1.924859	1.092682	1.271032	1	-1.904068	1.120636	1.272631
	M31 C	CBS-QB3			M31 C	BS-APNO			M	31 G3	
6	-0.810081	0.155222	0.195651	6	-0.805094	0.157059	0.193809	6	-0.805504	0.157735	0.193669
6	0.403130	-0.342620	0.976807	6	0.399344	-0.363722	0.960900	6	0.396488	-0.374815	0.957032
6	1.675907	-0.353614	0.124456	6	1.659238	-0.395053	0.105355	6	1.644551	-0.430009	0.083297
6	1.909090	0.388260	-0.926020	6	1.928053	0.428732	-0.897626	6	1.950424	0.448787	-0.866840
8	-1.133642	1.320148	0.216826	8	-1.116592	1.301507	0.242665	8	-1.103875	1.311322	0.241274
1	0.551506	0.316959	1.836672	1	0.556138	0.279517	1.820201	1	0.568893	0.273501	1.809125
1	2.448878	-1.041823	0.468957	1	2.396243	-1.134673	0.377602	1	2.332962	-1.234318	0.286910
1	0.226564	-1.356573	1.350010	1	0.199196	-1.368002	1.322331	1	0.185273	-1.371669	1.330707
6	-1.564875	-0.879963	-0.615305	6	-1.573564	-0.848542	-0.632853	6	-1.586191	-0.837651	-0.634989
1	-2.092852	-1.559303	0.062913	1	-2.110801	-1.519478	0.033154	1	-2.110685	-1.525875	0.022635
1	-2.288633	-0.387241	-1.263058	1	-2.281111	-0.336159	-1.270011	1	-2.305807	-0.317569	-1.251742
1	-0.875887	-1.487004	-1.208798	1	-0.898329	-1.451604	-1.231026	1	-0.920237	-1.425839	-1.257700
1	1.420534	1.150086	-1.514834	1	1.423538	1.247491	-1.371077	1	1.481989	1.326912	-1.263145
	M32 C	CBS-QB3			M32 C	BS-APNO			M3	32 G3	
6	1.352368	1.100790	-0.604133	6	1.448612	1.044383	-0.597807	6	1.423157	1.062071	-0.595734
6	0.933066	-0.143772	-0.023383	6	0.926086	-0.152113	-0.013265	6	0.927255	-0.147792	-0.019506
6	-0.269986	-0.855978	-0.634848	6	-0.272713	-0.832072	-0.647372	6	-0.272119	-0.839492	-0.640871
6	-1.605347	-0.244959	-0.278814	6	-1.609704	-0.227172	-0.285529	6	-1.610531	-0.236104	-0.278468
6	-1.832587	0.659850	0.668959	6	-1.843502	0.686879	0.634321	6	-1.844398	0.682634	0.638167
1	-2.834378	1.026054	0.861324	1	-2.843653	1.036713	0.819999	1	-2.843559	1.032507	0.826203
1	-2.445608	-0.617742	-0.860721	1	-2.442620	-0.621048	-0.847135	1	-2.442590	-0.634499	-0.836729
1	-0.168667	-0.871424	-1.727295	1	-0.167956	-0.816002	-1.729896	1	-0.171423	-0.835383	-1.723776
1	-0.240060	-1.897482	-0.299086	1	-0.259947	-1.873848	-0.342672	1	-0.252109	-1.878437	-0.327508
8	1.527886	-0.618676	0.947788	8	1.447459	-0.620122	0.990868	8	1.474985	-0.622325	0.975312
1	2.207365	1.607755	-0.174467	1	2.296636	1.516307	-0.137491	1	2.271885	1.541549	-0.146525

Table 13: Cartesian coordinates for minima (M28–M35) on the C_5H_7O potential energy surface.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5365 1.241297 09602 -1.456989
$1 \qquad 0.834195 \qquad 1.548605 \qquad -1.443499 \qquad 1 \qquad 1.008900 \qquad 1.486104 \qquad -1.472988 \qquad 1 \qquad 0.963875 \qquad 1.568605 \qquad -1.443499 \qquad -1.472988 $	9602 -1.456989
M33 CBS-QB3 M33 CBS-APNO M33 G3	
6 -1.695044 1.095574 -0.222748 6 -1.790063 1.022731 -0.218694 6 -1.781662 1.02	-0.223280
6 -1.042954 -0.154402 0.058659 6 -1.035861 -0.160669 0.068177 6 -1.035451 -0.15	0.069148
6 0.282368 -0.135251 0.832278 6 0.280852 -0.050247 0.823719 6 0.280945 -0.050247	0.826853
6 1.402217 0.488347 0.039774 6 1.389986 0.500640 -0.037997 6 1.392868 0.50	01349 -0.028889
6 2.459921 -0.173346 -0.418931 6 2.479253 -0.161872 -0.367801 6 2.475610 -0.16	-0.375346
1 3.234166 0.324323 -0.991620 1 3.238491 0.282799 -0.986979 1 3.237594 0.28	-0.988814
1 1.312762 1.552704 -0.169579 1 1.259820 1.509185 -0.400630 1 1.269146 1.5	6902 -0.371367
1 0.135444 0.423815 1.765158 1 0.142106 0.596814 1.687497 1 0.142729 0.58	1.698914
1 0.518648 -1.169591 1.085054 1 0.537775 -1.039630 1.178958 1 0.535933 -1.04	8453 1.173118
8 -1.538845 -1.218181 -0.314829 8 -1.450203 -1.250904 -0.298057 8 -1.458585 -1.25	0727 -0.297839
1 -2.622434 1.077709 -0.781296 1 -2.706288 0.929594 -0.771217 1 -2.696596 0.94	-0.777497
1 2.590169 -1.235223 -0.235781 1 2.653035 -1.170751 -0.033146 1 2.643316 -1.18	-0.061037
1 -1.297048 2.046190 0.112501 1 -1.468325 1.995722 0.105553 1 -1.457305 2.00	00400 0.098480
M34 CBS-QB3 M34 CBS-APNO M34 G3	
6 -0.066209 -1.217053 0.134804 6 -0.061520 -1.208993 0.160699 6 -0.063144 -1.2	1255 0.151034
6 0.893485 -0.029088 0.009955 6 0.887838 -0.027660 0.011171 6 0.886833 -0.02	0.009827
6 0.078374 1.272755 0.038611 6 0.086057 1.269970 0.033708 6 0.089086 1.2 ⁻	0.034238
6 -1.342590 0.828273 0.039800 6 -1.342920 0.820737 0.087454 6 -1.341208 0.82	0.079961
6 -1.478641 -0.658274 -0.127674 6 -1.460704 -0.662462 -0.161082 6 -1.466999 -0.66	61074 -0.150126
1 -1.809732 -0.912015 -1.147420 1 -1.715268 -0.857229 -1.204115 1 -1.746320 -0.80	59855 -1.183109
1 -2.187654 1.503827 0.048989 1 -2.177872 1.494207 0.025967 1 -2.173830 1.503827 0.048989 1 -2.177872 0.048989 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.177872 0.048989 1 -2.177872 0.048989 1 -2.177872 0.048989 1 -2.177872 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.048989 1 -2.1778830 0.04898989 0.04898989 0.048989 0.04898989 0.04898989 0.04	00322 0.011752
1 0.368448 1.862389 0.920871 1 0.390169 1.871049 0.887908 1 0.389856 1.86	0.893627
1 0.361896 1.891797 -0.826452 1 0.327997 1.850377 -0.856097 1 0.336600 1.85	59457 -0.848899
8 2.090444 -0.102562 -0.091731 8 2.062651 -0.102111 -0.102754 8 2.067564 -0.10	05160 -0.098256
1 0.242707 -2.021691 -0.534191 1 0.259820 -2.035388 -0.460122 1 0.250412 -2.02	.6255 -0.488731
1 -2.233925 -1.085749 0.540994 1 -2.238333 -1.122623 0.439513 1 -2.232666 -1.1	1235 0.473141
1 0.028192 -1.597743 1.158081 1 -0.000221 -1.533056 1.197275 1 0.008026 -1.53	59261 1.178668
M35 CBS-QB3 M35 CBS-APNO M35 G3	
6 -0.806868 0.947842 0.132370 6 -0.805240 0.947872 0.131785 6 -0.804968 0.93	0.126254
6 -1.481918 -0.322617 -0.372100 6 -1.477421 -0.327053 -0.355346 6 -1.461634 -0.32	.0.357092
6 2.220197 -0.949061 -0.161707 6 2.208194 -0.943518 -0.161971 6 2.189066 -0.95	-0.163535

Table 13: Cartesian coordinates for minima (M28–M35) on the C_5H_7O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
6	1.525355	0.009183	0.442963	6	1.520059	0.004957	0.440187	6	1.513739	0.003418	0.442446
6	0.677892	1.035806	-0.257039	6	0.673074	1.034706	-0.258273	6	0.677072	1.044111	-0.253155
1	0.774365	0.924839	-1.340711	1	0.771130	0.928252	-1.333620	1	0.781597	0.945938	-1.328495
1	1.545659	0.073151	1.530264	1	1.543641	0.066051	1.518552	1	1.537167	0.062093	1.520132
1	2.809765	-1.664247	0.400496	1	2.793372	-1.652779	0.396539	1	2.764914	-1.673285	0.389582
1	2.223915	-1.053734	-1.242351	1	2.213127	-1.047489	-1.234307	1	2.193997	-1.054587	-1.235413
8	-2.359293	-0.928922	0.132412	8	-2.344201	-0.924797	0.124441	8	-2.334691	-0.929328	0.126435
1	-1.367031	1.769439	-0.330052	1	-1.362990	1.759820	-0.328190	1	-1.360973	1.764637	-0.340078
1	1.034519	2.040426	-0.001245	1	1.031410	2.028207	0.000145	1	1.035442	2.035000	0.013802
1	-0.954799	1.014584	1.217377	1	-0.948069	1.014541	1.207063	1	-0.954272	1.030527	1.199484

Table 13: Cartesian coordinates for minima (M28–M35) on the C_5H_7O potential energy surface.

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Z
	M36 C	CBS-QB3			M36 C	BS-APNO			M3	36 G3	
6	-0.674190	0.117638	0.003781	6	-0.661212	0.113469	0.002717	6	-0.661849	0.114872	0.003086
6	0.177664	1.145552	0.000080	6	0.169525	1.137434	-0.000360	6	0.172092	1.137719	0.001910
6	1.332021	-0.854292	-0.082199	6	1.322926	-0.857526	-0.100037	6	1.323733	-0.859719	-0.100359
8	-0.025138	-1.108014	0.008102	8	-0.025574	-1.094102	0.009540	8	-0.026640	-1.095452	0.007370
1	-0.099533	2.188542	-0.001379	1	-0.117661	2.169351	-0.001578	1	-0.109619	2.171314	0.000875
6	-2.158603	0.039766	0.002063	6	-2.146992	0.038057	0.003194	6	-2.149068	0.039495	0.003385
1	-2.515830	-0.489842	-0.886231	1	-2.493032	-0.496575	-0.875888	1	-2.498611	-0.491999	-0.875714
1	-2.516441	-0.511172	0.877044	1	-2.491987	-0.504189	0.878083	1	-2.497612	-0.503230	0.876082
1	-2.594071	1.039271	0.014196	1	-2.579338	1.030509	0.008169	1	-2.582102	1.031433	0.010465
6	1.593536	0.618848	0.009554	6	1.588618	0.621824	0.012408	6	1.590257	0.620766	0.010732
1	2.197935	0.997821	-0.828802	1	2.188125	0.992912	-0.816685	1	2.187143	0.991904	-0.820244
1	2.143126	0.904692	0.924052	1	2.120295	0.882329	0.929222	1	2.127080	0.882928	0.923485
1	1.963354	-1.670275	0.236615	1	1.940998	-1.641071	0.294820	1	1.935846	-1.637533	0.313569
	M37 C	CBS-QB3			M37 Cl	BS-APNO			M3	37 G3	
6	-1.851375	-0.284318	-0.000049	6	-1.877695	-0.248837	0.000032	6	-1.875921	-0.252480	0.000024
6	-1.113567	1.033585	0.000178	6	-1.085801	1.034409	0.000218	6	-1.091470	1.036277	0.000220
6	0.391969	0.990251	-0.000182	6	0.417738	0.954465	-0.000191	6	0.412517	0.957931	-0.000193
6	1.154809	-0.074979	0.000222	6	1.167578	-0.133334	0.000292	6	1.163132	-0.133921	0.000299
8	-1.355972	-1.379591	-0.000168	8	-1.446825	-1.347338	-0.000379	8	-1.433120	-1.352699	-0.000385
1	-1.487795	1.601942	-0.865497	1	-1.430963	1.606365	-0.862450	1	-1.437357	1.609079	-0.861365
1	0.870035	1.979411	-0.000820	1	0.915957	1.918794	-0.000860	1	0.907128	1.923023	-0.000870
6	2.584507	-0.409989	0.000030	6	2.624049	-0.409937	0.000081	6	2.621921	-0.405414	0.000087
1	2.852178	-1.002427	-0.880663	1	2.906976	-0.984828	-0.876265	1	2.909386	-0.979486	-0.875096
1	3.209792	0.497135	-0.000714	1	3.195366	0.517748	-0.000664	1	3.193389	0.521640	-0.000663
1	2.852680	-1.001330	0.881306	1	2.907449	-0.983709	0.877009	1	2.909857	-0.978358	0.875855
1	-2.959762	-0.166682	0.000131	1	-2.964848	-0.082133	0.000279	1	-2.961583	-0.097234	0.000287
1	-1.487408	1.601376	0.866404	1	-1.430548	1.605862	0.863393	1	-1.436940	1.608567	0.862319
	M38 C	CBS-QB3			M38 Cl	BS-APNO			M3	38 G3	
6	-2.436648	-0.805208	0.037308	6	-2.412585	-0.827684	0.026778	6	-2.395357	-0.839975	0.031190
6	-1.695077	0.399879	-0.352641	6	-1.717653	0.427166	-0.349523	6	-1.718911	0.424692	-0.350147
6	-0.550375	1.014421	-0.183331	6	-0.555637	1.026772	-0.151415	6	-0.559516	1.037665	-0.152663
6	0.603978	0.497337	0.670152	6	0.593678	0.465208	0.663502	6	0.597552	0.488076	0.660446
6	1.790050	0.111679	-0.192606	6	1.772927	0.105959	-0.211182	6	1.762818	0.101162	-0.221603

Table 14: Cartesian coordinates for minima (M36–M40) on the C₅H₇O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
8	2.328454	-0.964394	-0.167779	8	2.346661	-0.925979	-0.162544	8	2.335577	-0.936838	-0.151953
1	-1.848635	-1.442195	0.715306	1	-1.779153	-1.466324	0.638599	1	-1.756695	-1.467521	0.648338
1	-2.696183	-1.407507	-0.838876	1	-2.695802	-1.385966	-0.859849	1	-2.668361	-1.409196	-0.851516
1	-3.370622	-0.547795	0.546743	1	-3.317370	-0.610516	0.585892	1	-3.305732	-0.637201	0.586308
1	-0.374899	1.965772	-0.686607	1	-0.393417	1.992359	-0.607585	1	-0.405136	2.003373	-0.609599
1	0.319393	-0.368805	1.268694	1	0.309957	-0.413824	1.226299	1	0.315440	-0.377094	1.245159
1	0.930404	1.297534	1.348652	1	0.933369	1.223237	1.368958	1	0.948595	1.256751	1.348284
1	2.141336	0.909492	-0.884970	1	2.084749	0.884338	-0.920924	1	2.067749	0.855866	-0.954696
	M39 C	CBS-QB3			M39 C	BS-APNO			M3	89 G3	
6	2.739535	-0.586586	0.041984	6	2.751824	-0.562355	0.037817	6	2.755384	-0.561842	0.038390
6	1.333094	-0.166808	0.027147	6	1.312790	-0.207215	0.020854	6	1.314171	-0.210130	0.028106
6	0.600278	0.919543	0.016667	6	0.592829	0.901117	0.019916	6	0.594659	0.903142	0.014046
6	-0.910936	0.968471	0.016185	6	-0.916302	0.966576	0.023152	6	-0.915032	0.965576	0.026094
6	-1.557800	-0.359972	-0.319892	6	-1.582543	-0.338437	-0.339724	6	-1.578096	-0.341653	-0.337254
8	-2.504771	-0.820682	0.262365	8	-2.461652	-0.828663	0.279758	8	-2.475350	-0.823497	0.273729
1	2.986419	-1.191984	-0.835662	1	3.020200	-1.141350	-0.840167	1	3.019893	-1.154790	-0.831247
1	2.966317	-1.185969	0.929137	1	2.992775	-1.154935	0.914577	1	3.007775	-1.140248	0.921184
1	3.409080	0.287565	0.046705	1	3.365641	0.336976	0.054403	1	3.370480	0.336153	0.035173
1	1.104744	1.894294	0.017286	1	1.108996	1.854255	0.039834	1	1.108440	1.856743	0.014382
1	-1.247356	1.690602	-0.742650	1	-1.241026	1.703648	-0.711566	1	-1.246636	1.706735	-0.700954
1	-1.307185	1.314058	0.975915	1	-1.294067	1.286363	0.988643	1	-1.290408	1.280300	0.994113
1	-1.098875	-0.890994	-1.182200	1	-1.210894	-0.813773	-1.255873	1	-1.193257	-0.827473	-1.238775
	M40 C	CBS-QB3			M40 C	BS-APNO			M 4	40 G3	
6	2.735241	-0.482842	-0.026171	6	2.731941	-0.480271	-0.024383	6	2.732399	-0.482288	-0.027264
6	1.489523	0.319282	-0.257759	6	1.482683	0.320686	-0.254311	6	1.485506	0.325379	-0.249836
6	0.342894	0.162382	0.401021	6	0.343503	0.149026	0.388879	6	0.341317	0.144535	0.387059
6	-0.896102	0.968887	0.141707	6	-0.893856	0.964973	0.140293	6	-0.893909	0.965673	0.146390
6	-2.120489	0.127997	-0.249899	6	-2.109804	0.121816	-0.233642	6	-2.105114	0.124716	-0.252776
8	-2.293257	-1.027198	-0.084159	8	-2.295344	-1.010962	-0.088567	8	-2.300459	-1.010480	-0.082291
1	3.571245	0.162435	0.265435	1	3.552072	0.164608	0.281018	1	3.554003	0.153091	0.292625
1	3.043115	-1.001387	-0.940892	1	3.039871	-0.981053	-0.938661	1	3.045345	-0.970515	-0.946250
1	2.592052	-1.230550	0.756965	1	2.585116	-1.232229	0.742723	1	2.581280	-1.246220	0.726787
1	0.257600	-0.609880	1.161850	1	0.257482	-0.623377	1.136027	1	0.249664	-0.638889	1.120778
1	-0.744127	1.724574	-0.632363	1	-0.743746	1.704196	-0.637085	1	-0.736188	1.721274	-0.613453

Table 14: Cartesian coordinates for minima (M36–M40) on the C₅H₇O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	-1.229945	1.510877	1.037486	1	-1.201276	1.507137	1.033043	1	-1.206973	1.489866	1.047841
1	1.549709	1.087288	-1.028605	1	1.546433	1.091034	-1.009539	1	1.555347	1.107143	-0.991431

Table 14: Cartesian coordinates for minima (M36–M40) on the C₅H₇O potential energy surface.

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Ζ
	M41 C	CBS-QB3			M41 Cl	BS-APNO			M4	1 G3	
6	0.682677	0.094983	-0.000004	6	0.676720	0.096931	0.000006	6	0.677601	0.098476	0.000006
6	-0.157072	1.196196	-0.000002	6	-0.152641	1.199821	0.000004	6	-0.154179	1.201415	0.000004
6	-1.443116	-0.737802	-0.000002	6	-1.426902	-0.747369	0.000008	6	-1.427776	-0.748090	0.000005
8	-0.032333	-1.074574	0.000001	8	-0.042489	-1.059379	-0.000010	8	-0.042866	-1.060203	-0.000006
1	0.181820	2.222117	0.000002	1	0.183458	2.217766	0.000013	1	0.179336	2.220354	0.000010
6	2.158931	-0.037727	0.000002	6	2.155438	-0.045409	-0.000001	6	2.157492	-0.045680	-0.000001
1	2.506001	-0.590661	0.880906	1	2.487717	-0.595344	0.876792	1	2.492337	-0.594827	0.875725
1	2.506007	-0.590668	-0.880896	1	2.487712	-0.595306	-0.876819	1	2.492332	-0.594792	-0.875752
1	2.631507	0.945507	-0.000001	1	2.630842	0.928454	0.000019	1	2.634505	0.927132	0.000017
6	-1.473235	0.759822	0.000003	6	-1.470826	0.755616	-0.000012	6	-1.472005	0.755427	-0.000010
1	-2.371871	1.356745	0.000001	1	-2.366522	1.343388	-0.000017	1	-2.368649	1.341804	-0.000011
1	-1.901949	-1.199642	-0.886217	1	-1.887021	-1.190743	-0.879893	1	-1.886862	-1.193679	-0.878411
1	-1.901958	-1.199637	0.886219	1	-1.887007	-1.190718	0.879941	1	-1.886858	-1.193661	0.878441
	M42 C	CBS-QB3			M42 CI	BS-APNO			M 4	42 G3	
6	-0.835461	0.154691	-0.000010	6	-0.845085	0.158474	-0.000010	6	-0.844527	0.154909	-0.000010
6	0.184554	-0.899372	0.000015	6	0.180830	-0.891299	0.000026	6	0.179502	-0.892572	0.000028
6	1.575997	-0.718007	0.000020	6	1.575605	-0.714140	0.000028	6	1.575472	-0.715355	0.000030
6	2.256108	0.475178	0.000000	6	2.278439	0.475921	-0.000005	6	2.280121	0.474928	-0.000006
8	-0.566073	1.349376	-0.000034	8	-0.579148	1.331216	-0.000047	8	-0.576704	1.334212	-0.000049
1	-0.182495	-1.921333	0.000033	1	-0.182188	-1.905160	0.000056	1	-0.183299	-1.906231	0.000060
1	2.168372	-1.630571	0.000041	1	2.153631	-1.624512	0.000060	1	2.152877	-1.625491	0.000063
6	-2.282194	-0.316758	0.000004	6	-2.284276	-0.312432	0.000004	6	-2.286311	-0.310780	0.000004
1	-2.942601	0.549012	-0.000131	1	-2.943312	0.544573	-0.000092	1	-2.942431	0.548355	-0.000085
1	-2.487837	-0.933238	-0.880936	1	-2.482875	-0.922869	-0.876539	1	-2.491778	-0.919814	-0.875545
1	-2.487882	-0.932982	0.881115	1	-2.482904	-0.922689	0.876667	1	-2.491804	-0.919647	0.875665
1	3.339657	0.482559	0.000006	1	3.353474	0.456128	0.000001	1	3.354601	0.456396	0.000000
1	1.727345	1.417157	-0.000022	1	1.784272	1.425659	-0.000038	1	1.789925	1.425953	-0.000040
	M43 C	CBS-QB3			M43 CI	BS-APNO			M 4	43 G3	
6	-1.000869	-0.101949	0.000020	6	-0.999225	-0.103169	-0.000583	6	0.995645	-0.102475	-0.000049
6	0.182929	-0.967796	-0.000018	6	0.181956	-0.967049	-0.000186	6	-0.180229	-0.968720	0.000111
6	1.556548	-0.673600	-0.000034	6	1.558812	-0.669461	0.000036	6	-1.558423	-0.671712	0.000128
6	2.205609	0.536259	-0.000081	6	2.211079	0.548616	-0.000016	6	-2.211144	0.547361	-0.000039
8	-2.105816	-0.633739	-0.000097	8	-2.083125	-0.641932	0.000363	8	2.087428	-0.640719	-0.000136

Table 15: Cartesian coordinates for minima (M41–M48) on the C_5H_7O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	-0.095409	-2.016724	-0.000052	1	-0.086387	-2.008778	-0.000023	1	0.088571	-2.009765	0.000191
1	2.198396	-1.552086	-0.000020	1	2.195354	-1.539524	0.000292	1	-2.194969	-1.541059	0.000250
6	-0.886349	1.411324	0.000183	6	-0.911257	1.405682	0.000099	6	0.907941	1.406937	0.000000
1	-1.891679	1.830039	0.000377	1	-1.916188	1.804394	0.000709	1	1.912522	1.806309	-0.000406
1	-0.347113	1.764859	0.883750	1	-0.384332	1.762772	0.879002	1	0.382557	1.768175	-0.877788
1	-0.347407	1.765041	-0.883494	1	-0.385110	1.763526	-0.878955	1	0.383284	1.768195	0.878207
1	3.288158	0.565765	-0.000089	1	3.285546	0.571278	0.000198	1	-3.284987	0.572599	-0.000030
1	1.694375	1.487586	-0.000117	1	1.707930	1.494068	-0.000224	1	-1.709141	1.492953	-0.000244
	M44 C	CBS-QB3			M44 C	BS-APNO			M4	44 G3	
6	1.037867	-0.038514	-0.017438	6	1.031429	-0.024184	-0.015920	6	1.029232	-0.020861	-0.015696
6	-0.114786	-0.944901	-0.288167	6	-0.100002	-0.952544	-0.208144	6	-0.094867	-0.956742	-0.190999
6	-1.424944	-0.707031	-0.151801	6	-1.422247	-0.728968	-0.120096	6	-1.422720	-0.737376	-0.111312
6	-2.118094	0.540017	0.312960	6	-2.151734	0.537597	0.238945	6	-2.156264	0.535115	0.221425
8	2.102002	-0.525392	0.394149	8	2.130696	-0.519392	0.295982	8	2.144087	-0.513858	0.272259
1	0.205395	-1.946846	-0.558106	1	0.227332	-1.958579	-0.407746	1	0.237188	-1.964360	-0.370978
1	-2.092581	-1.537238	-0.374040	1	-2.057060	-1.579464	-0.310251	1	-2.053601	-1.592708	-0.287285
6	0.966358	1.368964	-0.298311	6	0.961795	1.382464	-0.225024	6	0.950930	1.386896	-0.207666
1	1.830222	1.974467	-0.053170	1	1.846536	1.961213	-0.036486	1	1.835136	1.968671	-0.030718
1	0.129828	1.822973	-0.812808	1	0.093138	1.869672	-0.620670	1	0.075046	1.877064	-0.581387
1	-1.439785	1.272840	0.749575	1	-1.551720	1.210356	0.837525	1	-1.578206	1.194315	0.856007
1	-2.871073	0.286940	1.065815	1	-3.045116	0.295442	0.804922	1	-3.079653	0.302256	0.740265
1	-2.656416	1.018779	-0.513925	1	-2.474130	1.070303	-0.653725	1	-2.426472	1.083437	-0.678493
	M45 C	CBS-QB3			M45 Cl	BS-APNO			M 2	45 G3	
6	-0.958206	-0.122294	0.000001	6	-0.972100	-0.106348	-0.000017	6	-0.973307	-0.102042	0.000089
6	0.078605	0.943533	0.000107	6	0.075689	0.932149	0.000090	6	0.073314	0.933827	0.000119
6	1.410558	0.781162	0.000058	6	1.410595	0.772834	0.000067	6	1.411909	0.774186	0.000054
6	2.197586	-0.490923	-0.000093	6	2.224832	-0.488546	-0.000073	6	2.226456	-0.488071	-0.000075
8	-0.704861	-1.337534	0.000055	8	-0.712674	-1.319383	0.000027	8	-0.710419	-1.321584	-0.000039
1	-0.304498	1.960063	0.000210	1	-0.294931	1.943927	0.000188	1	-0.296603	1.945559	0.000206
1	2.006970	1.692565	0.000141	1	1.990358	1.683303	0.000168	1	1.992366	1.683312	0.000125
6	-2.331347	0.311918	-0.000107	6	-2.342681	0.297081	-0.000084	6	-2.344599	0.294293	-0.000087
1	-3.105647	-0.444518	-0.000178	1	-3.100501	-0.463260	-0.000110	1	-3.100786	-0.466826	-0.000217
1	-2.612110	1.358375	-0.000114	1	-2.634838	1.330948	-0.000105	1	-2.643289	1.325687	-0.000116
1	1.558737	-1.368756	-0.000476	1	1.617291	-1.377665	-0.000493	1	1.618909	-1.377245	-0.000428

Table 15: Cartesian coordinates for minima (M41–M48) on the C_5H_7O potential energy surface.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	2.855885	-0.519163	0.876331	1	2.872745	-0.502861	0.873650	1	2.874855	-0.505711	0.872748
1	2.856380	-0.518669	-0.876154	1	2.873254	-0.502340	-0.873422	1	2.875261	-0.505264	-0.872602
	M46 C	CBS-QB3			M46 C	BS-APNO			M 4	6 G3	
6	-1.131262	0.171783	-0.098688	6	-1.117784	0.187228	-0.071427	6	-1.120799	0.182333	-0.067976
6	-0.040747	-0.753090	-0.570319	6	-0.060492	-0.710739	-0.572832	6	-0.059320	-0.707249	-0.576486
6	1.358160	-0.348768	-0.550414	6	1.375998	-0.355670	-0.549953	6	1.375937	-0.340495	-0.561916
6	1.923362	0.599783	0.453961	6	1.952631	0.610083	0.442437	6	1.956164	0.606755	0.447026
8	-1.615811	1.258691	-0.208057	8	-1.684862	1.207086	-0.192966	8	-1.702534	1.202134	-0.184633
1	-0.323718	-1.436103	-1.366410	1	-0.360507	-1.336711	-1.397830	1	-0.356805	-1.331633	-1.404289
1	1.943505	-0.571655	-1.435217	1	1.938506	-0.573452	-1.440540	1	1.926223	-0.522466	-1.467552
6	-0.919046	-0.995631	0.747916	6	-0.888687	-1.004659	0.735852	6	-0.874434	-1.010586	0.733040
1	-1.591189	-1.842921	0.667184	1	-1.587755	-1.821542	0.681211	1	-1.568722	-1.832604	0.685510
1	-0.477618	-0.851627	1.730417	1	-0.402448	-0.882716	1.689127	1	-0.383129	-0.890489	1.684248
1	1.646224	1.643722	0.237110	1	1.620774	1.630378	0.247152	1	1.601340	1.625863	0.293860
1	3.014551	0.553711	0.466180	1	3.035719	0.601777	0.397909	1	3.037676	0.622635	0.378270
1	1.571936	0.390882	1.470449	1	1.664620	0.368121	1.462237	1	1.698400	0.327072	1.464882
	M47 C	CBS-QB3			M47 C	BS-APNO			M4	7 G3	
6	1.883223	0.233325	-0.191661	6	1.863218	0.203823	-0.211570	6	1.858485	0.202742	-0.224133
6	-0.531003	0.949159	-0.031647	6	-0.532452	0.944063	-0.031181	6	-0.535708	0.944850	-0.027651
6	-1.744541	0.463733	-0.296005	6	-1.734625	0.464231	-0.291156	6	-1.739203	0.465234	-0.287174
6	-2.287274	-0.901890	0.009219	6	-2.286684	-0.901398	0.008502	6	-2.288995	-0.903169	0.005914
8	2.665374	-0.641852	-0.305596	8	2.665489	-0.625366	-0.295296	8	2.677687	-0.622254	-0.287055
1	-0.305712	1.968329	-0.333501	1	-0.316362	1.957227	-0.329403	1	-0.320859	1.959428	-0.320105
1	-2.442997	1.133939	-0.792623	1	-2.426199	1.130736	-0.783026	1	-2.433680	1.131982	-0.773009
6	0.600628	0.231259	0.649087	6	0.606035	0.234680	0.650724	6	0.606812	0.234015	0.646713
1	0.880078	0.762290	1.569745	1	0.894579	0.780348	1.547604	1	0.899435	0.774969	1.545155
1	0.368085	-0.802885	0.917755	1	0.375513	-0.782503	0.939988	1	0.374802	-0.782141	0.938014
1	-2.641727	-1.386636	-0.906669	1	-2.627502	-1.374607	-0.908465	1	-2.634730	-1.372573	-0.910825
1	-3.151106	-0.831509	0.679551	1	-3.148758	-0.820574	0.665675	1	-3.147240	-0.830881	0.668582
1	-1.555806	-1.562230	0.476552	1	-1.568133	-1.560081	0.478088	1	-1.567566	-1.564788	0.466606
	M48 C	CBS-QB3			M48 C	BS-APNO			M4	8 G3	
6	1.888253	-0.542927	-0.169915	6	1.896682	-0.524650	-0.165058	6	1.885531	-0.533491	-0.185100
6	-0.281207	0.591479	0.524530	6	-0.278095	0.581097	0.495227	6	-0.275293	0.582663	0.492878
6	-1.532673	0.676227	0.069160	6	-1.528074	0.674388	0.075785	6	-1.527304	0.676745	0.071708

Table 15: Cartesian coordinates for minima (M41–M48) on the C_5H_7O potential energy surface.

At. No.	Х	Y	Ζ	At. No.	Х	Y	Z	At. No.	Х	Y	Z
6	-2.410138	-0.425030	-0.450186	6	-2.433786	-0.412833	-0.431643	6	-2.436203	-0.411929	-0.428153
8	2.427863	0.427285	-0.568162	8	2.444794	0.425208	-0.533186	8	2.451870	0.425900	-0.523235
1	0.212209	1.502940	0.848988	1	0.218838	1.481251	0.815397	1	0.225337	1.482282	0.806563
1	-1.990634	1.663311	0.071934	1	-1.973426	1.657134	0.095478	1	-1.971057	1.659505	0.083734
6	0.566756	-0.645418	0.607508	6	0.565964	-0.661949	0.569657	6	0.566093	-0.661212	0.574774
1	0.888849	-0.843930	1.639174	1	0.844897	-0.882250	1.598941	1	0.860554	-0.864732	1.603134
1	0.057278	-1.550151	0.274824	1	0.069835	-1.544275	0.191472	1	0.058860	-1.547236	0.221064
1	-2.730627	-0.208555	-1.475024	1	-2.770015	-0.179188	-1.438386	1	-2.774911	-0.186110	-1.435543
1	-3.322366	-0.506610	0.151043	1	-3.320838	-0.483148	0.192711	1	-3.322815	-0.480230	0.196560
1	-1.923565	-1.401267	-0.452226	1	-1.963789	-1.387504	-0.453939	1	-1.967879	-1.387327	-0.446266

Table 15: Cartesian coordinates for minima (M41–M48) on the C_5H_7O potential energy surface.

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Z
	TS1 C	BS-QB3			TS1 CI	3S-APNO			TS	S1 G3	
6	1.429601	-0.054846	0.338495	6	1.403890	-0.134241	0.329556	6	1.406305	-0.134398	0.329264
6	0.813886	1.110723	0.062061	6	0.876361	1.069055	0.101008	6	0.878424	1.069266	0.099985
6	-0.429571	0.710126	-0.577947	6	-0.381303	0.763224	-0.559233	6	-0.379441	0.762793	-0.557690
6	-0.473886	-0.707602	-0.722768	6	-0.508112	-0.619272	-0.740908	6	-0.511338	-0.620666	-0.741610
8	0.695095	-1.130812	-0.057898	8	0.627975	-1.125951	-0.094557	8	0.625986	-1.127747	-0.092677
1	2.382744	-0.273077	0.798026	1	2.331756	-0.413958	0.787681	1	2.333796	-0.417737	0.784642
1	1.169086	2.105513	0.277494	1	1.284474	2.024142	0.354634	1	1.284958	2.026096	0.350854
1	-1.081858	1.371024	-1.131743	1	-1.024884	1.473662	-1.038252	1	-1.020731	1.476547	-1.035301
6	-1.706733	-0.048632	0.577458	6	-1.694785	-0.053506	0.572424	6	-1.694038	-0.050969	0.570636
1	-2.644092	-0.203810	0.057615	1	-2.640622	-0.071307	0.060708	1	-2.640530	-0.055669	0.059634
1	-1.461656	-0.881093	1.228124	1	-1.530269	-0.954361	1.138236	1	-1.544341	-0.955890	1.133956
1	-1.724772	0.869321	1.169864	1	-1.620568	0.797860	1.236364	1	-1.620510	0.792474	1.244124
	TS2 C	BS-QB3			TS2 CI	3S-APNO			TS	S2 G3	
6	-1.550163	0.538402	-0.033105	6	-1.538129	0.530778	-0.041553	6	-1.535988	0.531454	-0.041602
6	-0.233650	1.150716	-0.007636	6	-0.227378	1.143250	-0.006470	6	-0.228026	1.144454	-0.005424
6	0.630355	0.112927	-0.004364	6	0.614398	0.102109	-0.004989	6	0.615308	0.102839	-0.004345
8	-0.051041	-1.079237	0.001881	8	-0.045898	-1.057120	-0.003105	8	-0.046874	-1.057470	-0.001444
1	0.010548	2.200381	0.007977	1	0.019462	2.183035	0.017393	1	0.015517	2.185357	0.019257
6	2.113699	0.024717	0.006216	6	2.100188	0.021407	0.008825	6	2.102544	0.019908	0.007927
1	2.462069	-0.498289	0.901282	1	2.434613	-0.512150	0.892260	1	2.440342	-0.514002	0.889418
1	2.465288	-0.541445	-0.860796	1	2.444628	-0.526892	-0.861575	1	2.448468	-0.526912	-0.862349
1	2.560918	1.018696	-0.016896	1	2.538242	1.010989	0.002900	1	2.543020	1.008158	0.002554
6	-1.424272	-0.896531	-0.100200	6	-1.415284	-0.871969	-0.101947	6	-1.420392	-0.871248	-0.104120
1	-1.812685	-0.168679	0.990692	1	-1.788563	-0.280507	0.988312	1	-1.793527	-0.292198	0.982892
1	-2.493623	1.041842	-0.202774	1	-2.483970	1.029033	-0.137649	1	-2.479503	1.034912	-0.134832
	TS3 C	BS-QB3			TS3 CI	BS-APNO			TS	S3 G3	
6	0.003612	-1.208487	0.190299	6	-0.029777	-1.212805	0.189446	6	-0.017078	-1.215087	0.191421
6	0.776789	-0.077130	0.480871	6	0.775428	-0.091511	0.486958	6	0.785342	-0.097147	0.490966
6	-0.527003	1.305328	0.172858	6	-0.504422	1.299413	0.169113	6	-0.522640	1.310010	0.169660
6	-1.659493	0.958111	-0.197381	6	-1.600687	0.886117	-0.197050	6	-1.609956	0.871450	-0.196873
8	-1.109278	-1.369108	-0.157790	8	-1.142246	-1.240131	-0.158460	8	-1.138187	-1.238439	-0.159602
1	0.971533	-0.004510	1.554147	1	0.964149	-0.015746	1.550338	1	0.977380	-0.013654	1.552050
1	0.056902	2.180616	0.405102	1	0.038428	2.190326	0.390528	1	0.018001	2.201512	0.391856

Table 16: Cartesian coordinates of all transition state structures.

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	X	Y	Z
6	2.002699	0.199231	-0.379803	6	1.997322	0.161106	-0.378849	6	1.998686	0.169955	-0.381645
1	2.836091	-0.459456	-0.127379	1	2.800768	-0.523599	-0.133916	1	2.811610	-0.507260	-0.146785
1	1.769681	0.079830	-1.439529	1	1.754057	0.053079	-1.429524	1	1.750598	0.065225	-1.430933
1	2.330063	1.228427	-0.215308	1	2.356159	1.170220	-0.209918	1	2.350500	1.180870	-0.212167
1	-2.669668	0.865645	-0.515776	1	-2.602776	0.792857	-0.517541	1	-2.608715	0.745725	-0.518378
	TS4 C	CBS-QB3			TS4 CI	BS-APNO			TS	4 G3	
6	-1.010330	0.497589	0.000007	6	-0.916639	0.499158	0.000057	6	-0.918022	0.509926	0.000026
6	-0.070701	1.309402	0.000042	6	0.008347	1.306534	-0.000007	6	0.010325	1.315457	0.000048
6	1.492491	-0.779080	-0.000037	6	1.413041	-0.862553	-0.000087	6	1.410494	-0.868443	-0.000044
8	0.510125	-1.429671	-0.000062	8	0.347999	-1.338688	-0.000017	8	0.333765	-1.337088	-0.000051
1	0.141906	2.363938	0.000077	1	0.227710	2.349588	-0.000026	1	0.243623	2.355605	0.000085
6	-2.279362	-0.219153	0.000020	6	-2.225717	-0.163480	0.000144	6	-2.223617	-0.162841	0.000012
1	-2.364185	-0.863291	-0.879824	1	-2.328138	-0.791708	-0.876695	1	-2.324571	-0.792505	-0.875694
1	-2.364144	-0.863326	0.879843	1	-2.328018	-0.791713	0.876994	1	-2.324573	-0.792536	0.875695
1	-3.135109	0.468245	0.000054	1	-3.025517	0.571961	0.000201	1	-3.031336	0.563393	0.000024
6	1.734721	0.593222	0.000016	6	1.752361	0.502075	-0.000115	6	1.764234	0.489657	0.000003
1	2.219808	0.959994	-0.904742	1	2.240750	0.840485	-0.902227	1	2.253117	0.830134	-0.899955
1	2.219805	0.959924	0.904804	1	2.240865	0.840494	0.901932	1	2.253134	0.830069	0.899975
	TS5 C	CBS-QB3			TS5 CI	BS-APNO			TS	5 G3	
6	0.224799	1.282731	-0.050411	6	0.209595	1.266222	-0.065200	6	0.208200	1.266103	-0.066025
6	1.537924	0.641910	-0.061293	6	1.541853	0.622354	-0.046633	6	1.541138	0.622510	-0.046024
6	1.386266	-0.703989	-0.045247	6	1.380484	-0.697299	-0.028918	6	1.383280	-0.697769	-0.027929
8	0.087471	-1.071419	0.062145	8	0.078949	-1.039446	0.045367	8	0.077786	-1.040711	0.046468
1	2.483704	1.161148	-0.113125	1	2.479307	1.137656	-0.088811	1	2.477701	1.140007	-0.085958
6	-0.623311	0.149077	0.096896	6	-0.610144	0.134911	0.051556	6	-0.608154	0.134714	0.047205
1	-0.398641	0.822643	1.115243	1	-0.359137	0.875601	1.071638	1	-0.359899	0.901600	1.060397
6	-2.102427	-0.000948	-0.098158	6	-2.095747	-0.003957	-0.071279	6	-2.095564	-0.005244	-0.069356
1	-2.521546	-0.756142	0.569598	1	-2.483503	-0.715734	0.648200	1	-2.484008	-0.707837	0.657952
1	-2.589018	0.957630	0.078378	1	-2.562753	0.960445	0.072195	1	-2.562724	0.960191	0.064259
1	-2.304169	-0.303203	-1.128571	1	-2.333390	-0.360983	-1.067474	1	-2.337736	-0.372770	-1.060132
1	2.090405	-1.523414	-0.069404	1	2.071633	-1.514809	-0.035838	1	2.070971	-1.517392	-0.035493
					TS6 CI	BS-APNO			TS	6 G3	
				6	0.768439	0.240417	0.490019	6	0.767112	0.242469	0.493139
				6	-0.111898	1.285751	0.176239	6	-0.111597	1.288855	0.179247

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Ζ
				6	-1.331297	0.814664	-0.195576	6	-1.329643	0.813777	-0.196900
				6	-1.357121	-0.614727	-0.151002	6	-1.356473	-0.612960	-0.152758
				8	-0.336828	-1.210419	0.187435	8	-0.333949	-1.214976	0.190516
				1	0.903767	0.051380	1.543734	1	0.908282	0.050483	1.544230
				1	-2.189448	1.392379	-0.481790	1	-2.188395	1.389629	-0.486062
				6	1.946973	-0.080372	-0.384389	6	1.942638	-0.079613	-0.387133
				1	2.728369	0.643044	-0.176010	1	2.723655	0.647849	-0.194616
				1	2.319291	-1.072899	-0.169428	1	2.322735	-1.067735	-0.168175
				1	1.679051	-0.006539	-1.430727	1	1.665884	-0.018196	-1.431510
				1	-2.236976	-1.198413	-0.397000	1	-2.232786	-1.197382	-0.401572
	TS7 C	BS-QB3			TS7 CI	BS-APNO			TS	67 G3	
6	-1.616736	-0.151596	-0.561445	6	-1.606142	-0.106481	-0.571864	6	-1.608163	-0.112786	-0.572492
6	-0.441277	0.350180	-0.300200	6	-0.437320	0.360969	-0.272004	6	-0.437748	0.359340	-0.278163
6	0.742137	0.825366	-0.030768	6	0.737610	0.815739	0.026409	6	0.738175	0.816351	0.020536
6	1.873189	-0.039774	0.478111	6	1.865312	-0.077286	0.468210	6	1.864248	-0.072270	0.471262
8	2.658304	-0.605170	-0.233786	8	2.638618	-0.575383	-0.270420	8	2.643476	-0.577890	-0.266060
1	-1.794890	-0.529994	-1.566992	1	-1.779019	-0.396944	-1.596452	1	-1.785572	-0.415290	-1.592213
1	0.972196	1.882122	-0.163168	1	0.950887	1.871995	-0.028555	1	0.952689	1.871617	-0.044103
6	-2.759200	-0.246348	0.418260	6	-2.744590	-0.273510	0.401464	6	-2.745837	-0.269563	0.404320
1	-3.631610	0.300935	0.047061	1	-3.604390	0.306863	0.079569	1	-3.606877	0.307346	0.080826
1	-3.065408	-1.288670	0.553069	1	-3.050615	-1.314533	0.449422	1	-3.054340	-1.308813	0.464814
1	-2.484718	0.161491	1.391821	1	-2.462715	0.049990	1.395680	1	-2.463174	0.062965	1.395176
1	1.949312	-0.111490	1.584753	1	1.947686	-0.230892	1.550404	1	1.945421	-0.221136	1.551207
	TS8 C	BS-QB3			TS8 CI	BS-APNO					
6	1.215642	0.010170	0.522557	6	1.112947	0.039487	0.508824				
6	0.511072	1.143286	0.054854	6	0.527538	1.247043	0.038497				
6	-0.747739	1.134079	-0.220360	6	-0.769434	1.123234	-0.215288				
6	-1.348676	-0.386557	0.075545	6	-1.278655	-0.250436	0.035144				
8	-2.423761	-0.798173	-0.042884	8	-2.186550	-0.926235	-0.017967				
1	1.513288	0.071659	1.573996	1	1.334198	0.031950	1.569073				
1	-1.500362	1.825575	-0.562570	1	-1.506214	1.825647	-0.556561				
6	2.289211	-0.632657	-0.348433	6	2.146403	-0.681612	-0.328572				
1	3.204202	-0.035262	-0.339028	1	3.088180	-0.146461	-0.262251				
1	2.533968	-1.628912	0.027083	1	2.299615	-1.691058	0.035542				

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Ζ
1	1.952052	-0.722827	-1.382940	1	1.847068	-0.717262	-1.369030				
1	0.169877	-0.734775	0.521554	1	-0.003235	-0.759240	0.495330				
									TS	9 G3	
								6	1.612817	0.273984	0.421807
								6	0.547488	0.888027	-0.034041
								6	-0.611372	1.348699	-0.355389
								6	-1.855746	-0.246320	0.478756
								8	-2.370818	-0.981065	-0.200258
								1	2.102260	0.678863	1.293718
								1	-0.776087	2.145372	-1.061854
								6	2.260413	-0.917534	-0.240348
								1	3.265956	-0.679825	-0.578248
								1	2.344753	-1.752537	0.451125
								1	1.687091	-1.246164	-1.099150
								1	-1.379034	0.621672	0.971757
	TS10 C	CBS-QB3			TS10 C	BS-APNO			TS	10 G3	
6	-1.584641	0.766631	-0.103169	6	-1.585216	0.740628	-0.100551	6	-1.587954	0.737818	-0.100494
6	-0.191681	1.181764	-0.001408	6	-0.177568	1.174452	-0.004005	6	-0.180687	1.173690	-0.003989
6	0.627957	0.095855	-0.009750	6	0.620162	0.104475	-0.008923	6	0.621451	0.106684	-0.008353
8	-0.096757	-1.059820	-0.009355	8	-0.112521	-1.035963	-0.010504	8	-0.111809	-1.038024	-0.008308
1	0.149876	2.206750	0.025168	1	0.154573	2.192549	0.008990	1	0.148085	2.193146	0.010172
6	2.105754	-0.063196	0.010000	6	2.096820	-0.074262	0.012775	6	2.099307	-0.072374	0.012137
1	2.423430	-0.612557	0.900938	1	2.395793	-0.629809	0.895864	1	2.402367	-0.628784	0.892821
1	2.445486	-0.627912	-0.862873	1	2.421277	-0.631995	-0.859776	1	2.426984	-0.627075	-0.860703
1	2.590810	0.913004	0.008031	1	2.588836	0.889491	0.018674	1	2.591767	0.890925	0.019860
6	-1.429988	-0.636307	-0.024082	6	-1.403574	-0.637519	-0.036825	6	-1.402355	-0.637724	-0.038406
1	-1.863160	-0.036125	0.987235	1	-1.844366	0.050167	0.980992	1	-1.856904	0.058994	0.973001
1	-2.136782	-1.433083	-0.213205	1	-2.119693	-1.429340	-0.135536	1	-2.116394	-1.431570	-0.134052
	TS11 C	CBS-QB3							TS	11 G3	
6	-1.528570	0.865155	0.000086					6	1.506331	0.860193	0.000004
6	-0.187839	1.185019	-0.000030					6	0.189693	1.162642	0.000005
6	0.620938	0.011721	-0.000090					6	-0.627405	-0.030328	-0.000001
8	-0.013372	-1.100113	-0.000020					8	-0.045296	-1.120422	-0.000012
1	0.247116	2.177808	-0.000044					1	-0.250169	2.142441	0.000009

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
6	2.113095	-0.035589	0.000000					6	-2.127411	-0.007068	0.000002
1	2.465110	-0.579283	0.880732					1	-2.490658	-0.534591	-0.874826
1	2.465246	-0.582298	-0.878784					1	-2.490648	-0.534504	0.874887
1	2.541908	0.966450	-0.001588					1	-2.516093	1.002377	-0.000043
6	-1.619226	-0.548554	-0.000011					6	1.729681	-0.506329	0.000001
1	-2.001074	-1.024264	0.903403					1	2.042307	-0.993499	-0.906545
1	-2.001715	-1.024025	-0.903289					1	2.042291	-0.993503	0.906549
	TS12 C	CBS-QB3			TS12 C	BS-APNO			TS	12 G3	
6	-1.727762	1.089712	-0.192852	6	-1.715724	1.087987	-0.176909	6	-1.710658	1.094231	-0.172896
1	-1.874376	1.621045	0.752786	1	-1.857499	1.599275	0.771077	1	-1.864375	1.599714	0.776075
1	-1.124477	1.743451	-0.830499	1	-1.118728	1.739823	-0.807897	1	-1.109305	1.752446	-0.792534
1	-2.689104	0.890240	-0.665797	1	-2.672701	0.895600	-0.642981	1	-2.663297	0.909160	-0.650179
6	-0.985571	-0.206849	0.043317	6	-0.978767	-0.210836	0.040174	6	-0.978800	-0.208957	0.041280
8	-1.401175	-1.278933	-0.317682	8	-1.397804	-1.254276	-0.328012	8	-1.406794	-1.252871	-0.334180
6	0.330753	-0.085917	0.800302	6	0.331901	-0.111636	0.791495	6	0.331467	-0.121182	0.791890
1	0.260973	-0.119960	1.886239	1	0.278561	-0.165036	1.867474	1	0.277380	-0.187419	1.866939
6	1.484948	0.025719	0.210186	6	1.474819	0.017958	0.202342	6	1.476784	0.012493	0.203498
6	2.628768	0.133810	-0.404760	6	2.613279	0.144743	-0.399218	6	2.615436	0.147042	-0.399278
1	3.056729	1.103501	-0.639189	1	3.024477	1.116581	-0.609223	1	3.028949	1.119743	-0.598970
1	3.192852	-0.745661	-0.699240	1	3.175279	-0.721328	-0.701657	1	3.179619	-0.712434	-0.714854
	TS13 C	CBS-QB3			TS13 C	BS-APNO			TS	13 G3	
6	-1.384114	-0.775515	0.030655	6	-1.403979	-0.718343	0.011160	6	-1.381226	-0.759365	0.013083
6	-2.068624	0.403747	-0.217842	6	-2.099738	0.461801	-0.134043	6	-2.096495	0.414716	-0.109654
1	-2.720221	0.784665	0.567813	1	-2.687054	0.800316	0.706079	1	-2.677344	0.737602	0.741200
6	-0.302622	-1.350423	0.234936	6	-0.415752	-1.422301	0.145573	6	-0.333771	-1.387556	0.119881
1	0.243628	-2.257964	0.384817	1	0.058775	-2.365690	0.241341	1	0.194821	-2.304420	0.198549
6	1.169702	0.194778	0.013681	6	1.248667	0.202902	-0.002307	6	1.196639	0.203024	0.001770
6	0.507419	1.393526	0.213296	6	0.541761	1.396076	0.136342	6	0.510985	1.411554	0.108556
1	-0.904367	1.100375	-0.135224	1	-0.773244	1.134816	-0.053267	1	-0.862991	1.118336	-0.058726
1	0.311936	1.637407	1.253705	1	0.590501	1.753181	1.154776	1	0.537543	1.813612	1.109655
1	0.870493	2.212447	-0.399951	1	0.857438	2.114830	-0.605076	1	0.782737	2.105884	-0.670459
8	2.142471	-0.402458	-0.262436	8	2.157329	-0.453479	-0.160315	8	2.150395	-0.423459	-0.132148
1	-2.471805	0.546057	-1.220030	1	-2.530799	0.669562	-1.101684	1	-2.554712	0.622420	-1.064854
	TS14 (BS-OB3									

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
6	-0.968845	0.265473	-0.089454								
6	0.014368	1.212190	-0.092206								
6	1.334832	0.791470	0.088533								
6	1.442017	-0.615412	0.066503								
8	0.401306	-1.303749	-0.082349								
1	-0.234530	2.233565	-0.362846								
1	2.184318	1.456356	0.146631								
6	-2.184970	-0.204804	0.085556								
1	-2.509789	-1.123799	-0.388869								
1	-2.883413	0.293743	0.752899								
1	2.408554	-1.123379	0.157378								
	TS15 C	CBS-QB3			TS15 C	BS-APNO					
6	-0.839295	1.005081	-0.096718	6	-0.809649	1.016674	-0.110765				
6	0.618519	1.116878	-0.077298	6	0.631532	1.129029	-0.067146				
6	-1.492574	-0.159238	-0.019548	6	-1.489681	-0.147696	0.056184				
6	1.492049	0.138309	-0.002367	6	1.491273	0.119210	-0.018858				
6	2.358974	-0.828150	0.078859	6	2.330753	-0.874515	0.044317				
8	-1.934791	-1.226010	-0.113469	8	-2.024080	-1.129730	-0.174971				
1	-2.373398	0.640179	1.641012	1	-1.719111	0.154053	2.007357				
1	-1.444764	1.898957	-0.131115	1	-1.420063	1.899418	-0.091531				
1	2.727318	-1.184533	1.038075	1	2.666614	-1.264583	0.991570				
1	2.750341	-1.319792	-0.808690	1	2.716440	-1.338779	-0.848885				
1	0.992797	2.135983	-0.129101	1	1.023391	2.131512	-0.081138				
	TS16 C	CBS-QB3			TS16 C	BS-APNO			TS	16 G3	
6	0.820775	1.026572	0.037963	6	0.834311	1.024752	0.032689	6	0.837487	1.025955	0.035895
6	-0.558870	1.135471	-0.151981	6	-0.546952	1.154209	-0.150606	6	-0.543852	1.157464	-0.151912
6	1.505555	-0.248210	0.410200	6	1.500702	-0.262722	0.402362	6	1.497253	-0.264050	0.405432
6	-1.454712	0.135061	-0.033960	6	-1.450138	0.150497	-0.012980	6	-1.449674	0.151947	-0.018520
6	-2.321368	-0.826853	0.055540	6	-2.308902	-0.830335	0.049862	6	-2.311938	-0.829962	0.051164
8	1.915288	-1.052811	-0.388063	8	1.873945	-1.061918	-0.384017	8	1.875174	-1.064853	-0.386116
1	1.639234	-0.420722	1.502364	1	1.649699	-0.430451	1.476272	1	1.637703	-0.439592	1.476230
1	1.447123	1.905408	-0.074960	1	1.468974	1.887270	-0.074335	1	1.473576	1.887239	-0.069721
1	-2.578998	-1.446151	-0.802696	1	-2.539903	-1.429228	-0.817447	1	-2.548729	-1.433743	-0.810368
1	-2.825687	-1.063335	0.991453	1	-2.814773	-1.078521	0.969775	1	-2.816657	-1.075533	0.971857

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Ζ	At. No.	X	Y	Ζ	At. No.	Х	Y	Z
1	-0.952259	2.115046	-0.418229	1	-0.929681	2.127866	-0.410088	1	-0.922941	2.132335	-0.411429
	TS17 C	CBS-QB3			TS17 C	BS-APNO			TS	17 G3	
6	-0.783101	1.060567	0.067026	6	-0.776909	1.037001	0.000000	6	0.779308	1.034894	0.000106
6	0.580295	1.119013	-0.047036	6	0.588065	1.044780	-0.000001	6	-0.589386	1.046475	-0.000009
6	-1.246172	-0.299661	-0.099359	6	-1.289347	-0.342308	-0.000001	6	1.289595	-0.344290	0.000182
6	1.220324	-0.136748	-0.165408	6	1.194917	-0.255099	-0.000002	6	-1.199381	-0.251153	-0.000052
6	2.363723	-0.742450	0.101143	6	2.486368	-0.651055	0.000002	6	-2.492093	-0.652351	-0.000006
8	-2.264526	-0.887463	0.091836	8	-2.369434	-0.782825	0.000001	8	2.378038	-0.781869	-0.000203
1	-0.077769	-0.837790	-0.401194	1	-0.061360	-0.958377	0.000000	1	0.053252	-0.958927	0.000479
1	-1.457962	1.895865	0.195681	1	-1.419340	1.897046	0.000009	1	1.422671	1.893693	0.000226
1	3.147054	-0.258728	0.684688	1	3.295395	0.064939	0.000002	1	-3.304913	0.058071	-0.000753
1	2.564766	-1.756936	-0.228262	1	2.752972	-1.692888	0.000001	1	-2.756109	-1.694312	0.000606
1	1.129701	2.052973	-0.123802	1	1.169241	1.951969	-0.000001	1	-1.167466	1.954980	-0.000254
	TS18 C	CBS-QB3							TS	18 G3	
6	-0.674268	0.435145	-0.085112					6	-0.683837	0.434998	-0.084008
6	0.504473	-0.241308	-0.102548					6	0.506536	-0.244230	-0.085231
6	-1.945236	-0.203152	-0.227393					6	-1.954466	-0.243181	-0.236984
6	1.794745	0.387086	0.017245					6	1.785705	0.394528	0.018000
6	2.954381	-0.286711	0.090840					6	2.963809	-0.282826	0.083116
8	-3.035362	-0.134504	0.223057					8	-3.022369	-0.111936	0.224223
1	1.808139	1.474373	0.046941					1	1.799275	1.471652	0.044782
1	-0.695069	1.525219	-0.057462					1	-0.711836	1.512979	-0.095034
1	2.980788	-1.371364	0.076500					1	2.996242	-1.357884	0.064007
1	3.904297	0.226955	0.170514					1	3.902749	0.233321	0.156478
1	0.480179	-1.325510	-0.179139					1	0.486040	-1.320315	-0.133372
	TS19 C	CBS-QB3									
6	-0.384860	0.691451	0.000023								
6	0.675530	-0.089781	0.000006								
6	-2.469957	-0.619058	-0.000032								
6	2.064918	0.375933	0.000015								
6	3.118974	-0.445234	-0.000005								
8	-3.413227	0.009497	-0.000010								
1	2.218718	1.451628	0.000038								
1	-0.598790	1.751076	0.000046								

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	2.997802	-1.523718	-0.000028								
1	4.133268	-0.064722	0.000002								
1	0.527190	-1.170111	-0.000018								
	TS20 C	CBS-QB3			TS20 C	BS-APNO			TS	20 G3	
6	0.761935	1.026456	-0.159361	6	0.786833	1.023852	-0.153915	6	0.781512	1.030878	-0.155310
6	-0.639761	1.109800	0.015388	6	-0.628703	1.112856	0.007226	6	-0.632852	1.114813	0.013268
6	1.509784	-0.076945	-0.029504	6	1.505000	-0.089101	-0.030699	6	1.502614	-0.085116	-0.034325
6	-1.461859	-0.028212	0.470237	6	-1.454627	-0.027494	0.470572	6	-1.452832	-0.030997	0.473640
6	-2.081525	-0.890939	-0.333537	6	-2.080070	-0.873410	-0.331780	6	-2.075988	-0.878279	-0.334114
8	2.185406	-1.019397	0.069379	8	2.145978	-1.028037	0.066836	8	2.151190	-1.029730	0.068059
1	-1.560704	-0.165378	1.550566	1	-1.537676	-0.165653	1.540488	1	-1.532808	-0.175434	1.542167
1	1.335212	1.908071	-0.432279	1	1.368979	1.890729	-0.410971	1	1.358615	1.899823	-0.416862
1	-2.021313	-0.803996	-1.413564	1	-2.029051	-0.779830	-1.403375	1	-2.028105	-0.780063	-1.404635
1	-2.671623	-1.709514	0.064818	1	-2.665207	-1.686517	0.061422	1	-2.655903	-1.697355	0.052608
1	-1.096264	2.085024	-0.103904	1	-1.075473	2.085344	-0.090681	1	-1.086044	2.083078	-0.096712
	TS21 C	CBS-QB3			TS21 C	BS-APNO					
6	-0.212922	-1.171084	0.114064	6	0.285901	1.142892	0.102396				
6	1.165193	-0.962101	0.014956	6	-1.080042	1.033769	0.037936				
6	-1.069909	-0.098162	-0.101473	6	1.043906	-0.091024	-0.149474				
6	1.580872	0.367602	-0.131323	6	-1.614458	-0.269352	-0.134944				
6	0.663361	1.363884	0.172111	6	-0.770621	-1.362336	0.170573				
8	-2.162076	0.335776	-0.106592	8	2.182470	-0.320680	-0.074574				
1	2.521140	0.593587	-0.625775	1	-2.539921	-0.407159	-0.667166				
1	-0.670566	-2.144697	0.251382	1	0.813691	2.068612	0.248111				
1	0.083783	1.299801	1.087532	1	-0.295732	-1.411667	1.135144				
1	0.752351	2.363619	-0.238769	1	-0.916987	-2.314158	-0.311360				
1	1.850327	-1.799351	-0.031649	1	-1.708921	1.906121	0.032941				
	TS22 C	CBS-QB3			TS22 C	BS-APNO			TS	22 G3	
6	-0.112041	-1.236518	0.087725	6	-0.093839	-1.218780	0.083269	6	-0.094435	-1.219312	0.083863
6	-1.364350	-0.768663	0.038748	6	-1.380409	-0.746071	0.026386	6	-1.383617	-0.745163	0.028891
6	0.819151	-0.055951	-0.052378	6	0.833535	-0.052936	-0.041844	6	0.831932	-0.053885	-0.043736
6	-1.346168	0.720020	-0.130731	6	-1.369940	0.697683	-0.119793	6	-1.371768	0.697583	-0.119973
6	-0.079683	1.157901	-0.167520	6	-0.065451	1.151889	-0.121326	6	-0.065008	1.150382	-0.128472
8	2.025137	-0.076032	-0.082605	8	2.015725	-0.072941	-0.090182	8	2.020240	-0.074460	-0.088706

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Z
1	-2.242405	1.320988	-0.207424	1	-2.250023	1.305059	-0.202082	1	-2.251050	1.306113	-0.200709
1	0.229951	-2.253809	0.203586	1	0.236377	-2.232925	0.185545	1	0.235725	-2.233071	0.187742
1	0.288784	2.161104	-0.316906	1	0.287350	2.143942	-0.317680	1	0.288958	2.142328	-0.321947
1	0.297303	1.826164	2.219187	1	0.329724	1.716484	2.018076	1	0.337763	1.740659	2.037829
1	-2.276181	-1.346923	0.107333	1	-2.272600	-1.339753	0.077450	1	-2.275937	-1.337984	0.083293
	TS23a	CBS-QB3			TS23a C	BS-APNO			TS2	3a G3	
6	0.109750	1.188630	-0.032731	6	0.098830	1.177958	-0.047201	6	0.102000	1.175739	-0.047813
6	1.456409	0.806805	-0.111312	6	1.425670	0.815279	-0.108481	6	1.428242	0.814214	-0.106479
6	-0.820504	-0.039991	-0.009311	6	-0.818745	-0.045990	-0.008857	6	-0.817638	-0.045489	-0.010664
6	1.379787	-0.714904	0.007431	6	1.364624	-0.709745	0.004006	6	1.364422	-0.710283	0.003639
6	0.128096	-1.192826	-0.003311	6	0.132053	-1.192288	0.001815	6	0.130598	-1.193334	0.002329
8	-2.025271	-0.043901	0.007078	8	-1.998013	-0.040391	0.009473	8	-2.002779	-0.037003	0.010991
1	2.281510	-1.312615	0.053996	1	2.262841	-1.296730	0.036654	1	2.261578	-1.298432	0.037298
1	-0.270913	2.192986	-0.195450	1	-0.285726	2.179869	-0.128502	1	-0.283216	2.177008	-0.131377
1	-0.204097	-2.221598	0.027058	1	-0.186708	-2.215600	0.032769	1	-0.189107	-2.216213	0.030156
1	0.874433	1.406141	0.953183	1	0.979112	1.384303	0.935604	1	0.987228	1.388583	0.929919
	TS23b	CBS-QB3			TS23b C	CBS-APNO			TS2	3b G3	
6	0.229503	1.381528	0.212423	6	0.406138	1.406143	0.269881	6	0.418465	1.409991	0.259309
6	1.288316	0.709316	-0.379869	6	1.276552	0.631537	-0.445855	6	1.293269	0.620071	-0.434960
6	-0.835093	-0.221125	0.038887	6	-0.882982	-0.220614	0.024483	6	-0.886825	-0.216993	0.025885
6	1.432833	-0.612865	-0.007699	6	1.339111	-0.702423	-0.044656	6	1.339961	-0.710968	-0.039493
6	0.170550	-1.210631	0.113213	6	0.085856	-1.230800	0.166133	6	0.075801	-1.231326	0.157679
8	-1.988775	-0.059257	-0.148577	8	-1.964272	0.074366	-0.178218	8	-1.976986	0.082735	-0.172072
1	2.371508	-1.147705	0.069976	1	2.242139	-1.284280	-0.002226	1	2.235258	-1.303393	0.009234
1	-0.263383	2.223936	-0.266176	1	0.000329	2.322202	-0.128330	1	0.020020	2.320631	-0.157226
1	-0.071725	-2.260263	0.219626	1	-0.206604	-2.238499	0.388877	1	-0.220900	-2.238988	0.375798
1	0.157146	1.380751	1.303462	1	0.330267	1.302589	1.347496	1	0.337484	1.335221	1.338246
	TS24 C	CBS-QB3			TS24 C	BS-APNO			TS2	24 G3	
6	1.560099	0.615001	-0.068495	6	1.556558	0.609942	-0.076281	6	1.557922	0.610937	-0.078462
6	0.244748	1.160611	-0.034851	6	0.245794	1.161286	-0.022532	6	0.248856	1.162348	-0.019784
6	-0.627574	0.096936	0.057045	6	-0.622869	0.091619	0.102604	6	-0.623889	0.092289	0.110429
8	0.090747	-1.070399	0.010240	8	0.089573	-1.059687	0.016042	8	0.089413	-1.062042	0.019849
6	1.409155	-0.736584	-0.035749	6	1.396847	-0.735937	-0.043732	6	1.398697	-0.737358	-0.045442
1	2.493181	1.154249	-0.103039	1	2.486511	1.137307	-0.126023	1	2.487226	1.139659	-0.131518

Table 16: Cartesian coordinates of all transition state structures.

At. No.XYZAt. No.XYZAt. No.X1 -0.033918 2.202430 -0.038178 1 -0.031635 2.195110 -0.020150 1 -0.026713 26 -2.100786 -0.023743 -0.144085 6 -2.089195 -0.020055 -0.164886 6 -2.088930 -0.020150 1 -2.516366 -0.817867 0.477970 1 -2.526436 -0.821304 0.417544 1 -2.530949 -0.020150 1 -2.591193 0.914164 0.119190 1 -2.585981 0.908058 0.090290 1 -2.590749 0.022975 1 -2.329875 -0.252803 -1.190366 1 -2.262170 -0.229175 -1.217612 1 -2.256435 -0.020568 1 -0.764431 0.249922 2.038767 1 -0.809244 0.195236 2.009568 1 -0.842966 0.0349216 1 2.102776 -1.560229 -0.029442 1 2.089562 -1.548865 -0.052990 1 2.089337 -1.560229 1 2.102776 -1.560229 -0.029442 1 2.089562 -1.548865 -0.052990 1 2.089337 -1.560229 1 2.102776 -1.560229 -0.029442 1 2.089562 -1.548865 -0.052990 1 2.089337 -1.560229 1 6.0349216 1.175192 0.316862 6 0.339650 1.172493 0.320714 6 <t< th=""><th>Y Z 2.196919 -0.017239 0.019192 -0.171924 0.827501 0.396216 0.903775 0.090645 0.214994 -1.227528 0.196134 2.017384 1.551806 -0.055651 G3 .171970</th></t<>	Y Z 2.196919 -0.017239 0.019192 -0.171924 0.827501 0.396216 0.903775 0.090645 0.214994 -1.227528 0.196134 2.017384 1.551806 -0.055651 G3 .171970
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.196919-0.0172390.019192-0.1719240.8275010.3962160.9037750.0906450.214994-1.2275280.1961342.0173841.551806-0.055651G3.1719700.321992
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.019192-0.1719240.8275010.3962160.9037750.0906450.214994-1.2275280.1961342.0173841.551806-0.055651G3.1719700.321992
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.827501 0.396216 0.903775 0.090645 0.214994 -1.227528 0.196134 2.017384 1.551806 -0.055651 G3 .171970 0.321992
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9037750.0906450.214994-1.2275280.1961342.0173841.551806-0.055651G3.1719700.3219920.321992
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.214994-1.2275280.1961342.0173841.551806-0.055651G3.1719700.321992
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1961342.0173841.551806-0.055651G3.1719700.321992
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.551806 -0.055651 G3 .171970 0.321992
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	G3 .171970 0.321992
60.3492161.1751920.31686260.3396501.1724930.32071460.342482161.4008480.612548-0.45440161.4006930.619224-0.43714461.402850061.276936-0.741991-0.34787661.274943-0.734623-0.34074161.280085-080.219259-1.0678890.44608480.218811-1.0666300.43117180.223986-110.1325452.2201450.47050210.1133532.2069030.47721910.1161742	.171970 0.321992
61.4008480.612548-0.45440161.4006930.619224-0.43714461.402850061.276936-0.741991-0.34787661.274943-0.734623-0.34074161.280085-080.219259-1.0678890.44608480.218811-1.0666300.43117180.223986-110.1325452.2201450.47050210.1133532.2069030.47721910.1161742	
61.276936-0.741991-0.34787661.274943-0.734623-0.34074161.280085-080.219259-1.0678890.44608480.218811-1.0666300.43117180.223986-110.1325452.2201450.47050210.1133532.2069030.47721910.1161742	.621515 -0.439705
8 0.219259 -1.067889 0.446084 8 0.218811 -1.066630 0.431171 8 0.223986 -1 1 0.132545 2.220145 0.470502 1 0.113353 2.206903 0.477219 1 0.116174 2).733665 -0.344921
1 0.132545 2.220145 0.470502 1 0.113353 2.206903 0.477219 1 0.116174 2.	1.068601 0.430168
	.206293 0.479944
1 2.157011 1.139974 -1.014275 1 2.159887 1.144623 -0.979180 1 2.158437 1	.150607 -0.983544
6 -0.405652 0.109576 0.784857 6 -0.431570 0.087959 0.759496 6 -0.425443 0	0.086865 0.762844
1 -1.076098 0.043827 1.625074 1 -1.048223 0.027637 1.631043 1 -1.042072 0	0.022058 1.633596
6 -2.230310 -0.018315 -0.590883 6 -2.199982 -0.011771 -0.580707 6 -2.216484 -0	0.011260 -0.578300
1 -2.669836 -0.941066 -0.230231 1 -2.649958 -0.927124 -0.232851 1 -2.670367 -0	0.921118 -0.224005
1 -2.774677 0.895640 -0.383439 1 -2.758775 0.889906 -0.388246 1 -2.767889 0	.894296 -0.388068
1 -1.703680 -0.067592 -1.535703 1 -1.711727 -0.065932 -1.538946 1 -1.732084 -0).073279 -1.536954
1 1.834440 -1.569885 -0.751959 1 1.842558 -1.542668 -0.748115 1 1.844983 -1	1.542599 -0.753770
TS26 CBS-QB3 TS26 G3	
6 -1.306511 -0.705208 0.135840 6 -1.291456 -0.703114 0.128444	
6 -1.305314 0.677794 0.380340 6 -1.287546 0.669431 0.391810	
6 -0.178395 1.271876 -0.183958 6 -0.178552 1.271572 -0.182628	
6 0.874747 0.365088 -0.507263 6 0.884754 0.386620 -0.500308	
8 -0.291940 -1.242020 -0.426007 8 -0.305435 -1.229019 -0.441411	
1 -2.171150 1.207964 0.753084 1 -2.145851 1.193013 0.765917	
1 -0.198207 2.279189 -0.589064 1 -0.197672 2.269854 -0.585630	
6 1.809937 -0.216005 0.520334 6 1.791028 -0.237480 0.522730	
1 2.200198 -1.182049 0.193997 1 2.167182 -1.189938 0.174113	
1 2.658763 0.467447 0.646119 1 2.637549 0.430494 0.673038	
1 1.318874 -0.332396 1.486721 1 1.285542 -0.371877 1.468012	
1 1.332248 0.474227 -1.492875 1 1.341175 0.498636 -1.472775	

Table 16: Cartesian coordinates of all transition state structures.

At. No.	X	Y	Ζ	At. No.	X	Y	Ζ	At. No.	Х	Y	Ζ
1	-2.171980	-1.339495	0.338313	1	-2.153813	-1.320200	0.348326				
	TS27 C	CBS-QB3									
6	-1.429927	-0.109874	0.386499								
6	-0.625843	1.120929	0.119731								
6	0.738657	1.204035	-0.101520								
6	1.683487	0.184046	-0.119625								
8	-1.979509	-0.759587	-0.468800								
1	-1.213022	2.035720	0.096116								
1	1.120188	2.204553	-0.289928								
6	1.420127	-1.274642	0.100980								
1	2.342125	-1.853529	0.030198								
1	0.988811	-1.468879	1.090931								
1	0.712921	-1.675823	-0.632913								
1	2.708750	0.476731	-0.319730								
1	-1.542714	-0.389042	1.459332								
	TS28 C	CBS-QB3			TS28 C	BS-APNO					
6	-1.222954	-0.218449	0.204094	6	-1.314210	-0.341614	0.030707				
6	-0.751725	1.057354	-0.321867	6	-0.830465	1.035831	-0.186037				
6	0.550719	1.247869	0.001858	6	0.470546	1.123697	0.071519				
6	1.237514	0.072884	0.553718	6	1.152755	-0.126687	0.532647				
8	-2.177769	-0.906033	0.011215	8	-2.371994	-0.828473	-0.046168				
1	-1.415993	1.766995	-0.798947	1	-1.471204	1.832954	-0.515374				
1	1.040441	2.215146	-0.083948	1	1.021992	2.043465	-0.050768				
6	1.848427	-0.959421	-0.377159	6	2.263981	-0.667917	-0.342129				
1	2.794827	-0.599871	-0.800641	1	3.114190	0.013422	-0.370435				
1	2.065188	-1.886899	0.160610	1	2.618487	-1.621151	0.034987				
1	1.181265	-1.192803	-1.210194	1	1.923769	-0.812953	-1.362938				
1	1.856727	0.268695	1.432265	1	1.389822	-0.119836	1.589528				
1	-0.072187	-0.524421	0.847263	1	-0.076744	-0.847972	0.404098				
	TS29 C	CBS-QB3									
6	-2.018042	-0.711661	0.130445								
6	-0.504868	1.178151	-0.151892								
6	0.770363	1.021332	0.098123								
6	1.460828	-0.235204	0.569801								

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
8	-3.085693	-0.424933	-0.126511								
1	-1.145314	1.980228	-0.489748								
1	1.428877	1.885953	-0.060285								
6	2.520460	-0.729586	-0.426106								
1	3.280273	0.035418	-0.612533								
1	3.028469	-1.617676	-0.041212								
1	2.063915	-0.988054	-1.384849								
1	1.943461	-0.024562	1.532006								
1	0.713418	-1.010035	0.746480								
	TS30 C	CBS-QB3			TS	30 G3					
6	-1.540780	-0.539698	-0.100830	6	-1.546785	-0.522057	-0.069520				
6	-1.384277	0.847040	-0.021764	6	-1.368667	0.851126	-0.007142				
6	-0.028732	1.182549	0.055338	6	-0.007977	1.174081	0.014195				
6	0.810595	0.085147	0.398168	6	0.815658	0.098782	0.395795				
8	-0.499807	-1.290908	-0.007471	8	-0.536838	-1.285350	-0.065227				
1	-2.194285	1.542425	-0.194202	1	-2.170293	1.551750	-0.139918				
1	0.374605	2.101120	-0.359811	1	0.400595	2.049833	-0.460216				
1	-2.495086	-1.025321	-0.308681	1	-2.525378	-0.974655	-0.157641				
6	2.155175	-0.136571	-0.225491	6	2.171314	-0.155230	-0.187141				
1	2.936040	0.337887	0.382509	1	2.938678	0.215978	0.488416				
1	2.378985	-1.204975	-0.257734	1	2.320209	-1.222527	-0.296789				
1	2.207413	0.264049	-1.238898	1	2.291925	0.316987	-1.153460				
1	0.718902	-0.318721	1.404064	1	0.657711	-0.334774	1.364297				
	TS31 0	CBS-QB3			TS31 C	BS-APNO			TS	31 G3	
6	-1.789434	-0.106507	0.385294	6	-1.789811	-0.121111	0.380522	6	-1.789197	-0.120293	0.383494
6	-0.861835	0.994974	-0.010633	6	-0.869931	0.991890	-0.007508	6	-0.870709	0.992520	-0.005861
6	0.514233	0.851886	-0.108996	6	0.512956	0.856215	-0.104444	6	0.513168	0.856162	-0.105336
6	1.228006	-0.317769	0.090682	6	1.225616	-0.319551	0.090129	6	1.227069	-0.320490	0.089902
8	-2.326808	-0.859165	-0.389190	8	-2.319272	-0.847499	-0.388132	8	-2.324580	-0.847185	-0.389864
1	-1.323145	1.959633	-0.200215	1	-1.332436	1.947748	-0.185846	1	-1.332375	1.947916	-0.187262
1	1.081743	1.742849	-0.371660	1	1.070270	1.744109	-0.357246	1	1.070150	1.743191	-0.359899
1	-1.984381	-0.196878	1.479199	1	-1.974237	-0.230938	1.457379	1	-1.969059	-0.236486	1.457266
6	2.712774	-0.424167	-0.019667	6	2.717597	-0.421712	-0.021644	6	2.719843	-0.421773	-0.022131
1	3.158349	-0.780040	0.917710	1	3.001296	-1.126896	-0.799567	1	3.160239	-0.774106	0.907505

Table 16: Cartesian coordinates of all transition state structures.

	Λ	Ŷ		At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	3.003016	-1.149015	-0.790453	1	3.165650	0.537728	-0.257307	1	3.006215	-1.128662	-0.796877
1	3.170781	0.536068	-0.268462	1	3.155169	-0.779006	0.907882	1	3.167390	0.536687	-0.261732
1	0.685639	-1.229796	0.327316	1	0.689905	-1.227142	0.317436	1	0.693037	-1.227820	0.319502
	TS32 C	CBS-QB3									
6	1.354530	-0.306027	-0.123194								
6	0.871326	1.061377	-0.066046								
6	-0.481112	1.084587	0.071243								
6	-1.093662	-0.203245	0.388083								
8	2.414358	-0.842382	-0.014152								
1	1.527262	1.910100	-0.212404								
1	-1.078231	1.974256	-0.114694								
1	0.119327	-0.880455	-0.072224								
6	-2.417510	-0.584398	-0.229180								
1	-2.647428	-1.636783	-0.047567								
1	-3.238135	0.004758	0.202869								
1	-2.424159	-0.417507	-1.309075								
1	-0.974931	-0.529072	1.420874								
	TS33 (CBS-QB3									
6	-1.760847	-0.153546	0.350781								
6	-0.644087	0.693204	0.660108								
6	0.426824	1.000924	-0.299911								
6	1.572933	0.334937	-0.444210								
8	-1.911146	-0.730548	-0.724751								
1	-0.636165	1.167963	1.640345								
1	0.238569	1.858745	-0.946480								
6	1.999213	-0.876288	0.329414								
1	2.129346	-1.733075	-0.340407								
1	2.964895	-0.708195	0.818375								
1	1.270552	-1.155093	1.093029								
1	2.268204	0.686894	-1.202466								
1	-2.510445	-0.268244	1.158525								
	TS34 0	CBS-QB3							TS	34 G3	
6	1.663473	-0.354916	0.222031					6	1.662469	-0.364979	0.208758
6	0.339737	-0.104890	0.827974					6	0.348910	-0.116115	0.829707

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
6	-0.520710	0.998048	0.287384					6	-0.511449	0.988116	0.295185
6	-1.647123	0.555590	-0.271156					6	-1.630038	0.565740	-0.264609
8	2.036263	0.118935	-0.831631					8	2.023564	0.127065	-0.824837
1	0.331430	-0.244944	1.912694					1	0.348873	-0.254314	1.903774
1	-0.227771	2.039385	0.352111					1	-0.220155	2.019952	0.373378
6	-1.775209	-0.929609	-0.273272					6	-1.784500	-0.921159	-0.275439
1	-2.549887	-1.387615	0.341467					1	-2.553847	-1.351256	0.350217
1	-1.606350	-1.451698	-1.215120					1	-1.684879	-1.421040	-1.228528
1	-0.502958	-1.040260	0.408624					1	-0.528987	-1.072198	0.387558
1	-2.410925	1.198621	-0.698314					1	-2.374032	1.216960	-0.689835
1	2.315352	-1.050298	0.793813					1	2.312157	-1.064243	0.740527
	TS35 (CBS-QB3			TS35 C	BS-APNO			TS	35 G3	
6	-1.718519	-0.067883	-0.012819	6	-1.734754	-0.048217	-0.031313	6	-1.732961	-0.053512	-0.028654
6	-0.674954	0.910584	0.543122	6	-0.673887	0.858003	0.579517	6	-0.679685	0.863953	0.576314
6	0.544796	1.078284	-0.313228	6	0.530899	1.062919	-0.303166	6	0.526878	1.066694	-0.305637
6	1.636654	0.218718	-0.331604	6	1.650729	0.235485	-0.348860	6	1.646375	0.236682	-0.348753
8	-1.470669	-1.176429	-0.403254	8	-1.529566	-1.155444	-0.386429	8	-1.512103	-1.162202	-0.389497
1	-0.401589	0.518442	1.532825	1	-0.384293	0.405719	1.524421	1	-0.389022	0.422908	1.526055
1	0.557236	1.938749	-0.973215	1	0.511059	1.921935	-0.951465	1	0.506290	1.923493	-0.956125
6	1.779568	-0.950134	0.386200	6	1.842331	-0.938968	0.364773	6	1.837661	-0.936308	0.369829
1	0.987726	-1.337546	1.014089	1	1.083664	-1.350196	1.003559	1	1.079287	-1.346362	1.008884
1	2.684439	-1.539593	0.311992	1	2.756692	-1.494293	0.263847	1	2.750545	-1.493729	0.272362
1	2.458966	0.506107	-0.983189	1	2.443944	0.546075	-1.009869	1	2.440575	0.544557	-1.009197
1	-2.764365	0.312399	-0.013675	1	-2.742063	0.380821	-0.114009	1	-2.744678	0.358781	-0.103661
1	-1.162331	1.875452	0.707182	1	-1.124381	1.818156	0.809244	1	-1.135781	1.822909	0.799065
	TS36 C	CBS-QB3									
6	-1.866936	0.110186	-0.283793								
6	-0.108861	1.329075	0.673249								
6	0.825789	1.066785	-0.276498								
6	1.651235	-0.129325	-0.367114								
8	-1.905692	-1.042099	-0.031326								
1	-0.203609	0.719879	1.563700								
1	0.968277	1.799316	-1.067286								
6	1.468424	-1.276578	0.303623								

Table 16: Cartesian coordinates of all transition state structures.

At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Z
1	0.642055	-1.423370	0.989005								
1	2.139728	-2.115241	0.163669								
1	2.477193	-0.072073	-1.071933								
1	-1.964428	0.550278	-1.308153								
1	-0.631588	2.277147	0.684802								
	TS37 (CBS-QB3									
6	-1.550008	-0.002934	0.036896								
6	-0.741341	1.132676	0.208104								
6	0.631668	1.260258	-0.069612								
6	1.544873	0.214872	-0.193587								
8	-1.208500	-1.195080	-0.282647								
1	-1.298733	2.046200	0.386334								
1	0.995897	2.266824	-0.258181								
6	1.302072	-1.100905	0.280542								
1	2.042549	-1.859454	0.044467								
1	0.932323	-1.174675	1.306633								
1	0.041744	-1.315522	-0.167674								
1	2.461124	0.421493	-0.743010								
1	-2.630485	0.151967	0.118549								
	TS38 C	CBS-QB3			TS38 C	BS-APNO					
6	-1.097354	0.169985	0.429522	6	-1.105615	0.148216	0.464020				
6	-0.152848	1.202977	0.413708	6	-0.174930	1.228529	0.373364				
6	1.057516	0.932042	-0.341674	6	1.061407	0.953743	-0.302279				
6	1.424443	-0.373560	-0.318820	6	1.462646	-0.349583	-0.296457				
8	-1.663375	-0.397867	-0.676839	8	-1.672491	-0.409277	-0.649225				
1	-0.161332	1.929853	1.219730	1	-0.278316	2.090391	1.011608				
1	1.647709	1.704921	-0.823479	1	1.676888	1.738223	-0.707899				
6	0.638854	-1.275214	0.534746	6	0.647405	-1.324001	0.481000				
1	0.812974	-1.214386	1.606687	1	0.996190	-1.550520	1.478090				
1	0.380110	-2.267353	0.174413	1	0.177102	-2.146560	-0.031621				
1	-1.074694	-0.238775	-1.426554	1	-1.125494	-0.246290	-1.398109				
1	2.263250	-0.742093	-0.906002	1	2.385058	-0.656283	-0.762481				
1	-1.784685	0.073388	1.265028	1	-1.796977	0.103835	1.286322				
	TS39 (CBS-QB3			TS39 C	BS-APNO			TS	39 G3	

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Ζ	At. No.	Х	Y	Ζ
6	0.070398	0.999075	0.565090	6	0.575854	0.032148	0.750897	6	0.571200	0.032142	0.753582
6	0.524055	-0.266857	0.831382	6	-0.148242	-1.138092	0.462884	6	-0.151462	-1.138795	0.462622
6	-0.413825	-1.231669	0.241849	6	-1.310023	-0.799907	-0.300557	6	-1.312623	-0.801415	-0.302263
6	-1.392736	-0.571250	-0.402495	6	-1.399759	0.561930	-0.429474	6	-1.403050	0.562446	-0.430972
8	2.077345	0.021456	-0.647400	8	2.079469	0.007045	-0.623196	8	2.092296	0.006765	-0.620180
1	1.322128	-0.525391	1.508612	1	0.149222	-2.132288	0.737835	1	0.144551	-2.132870	0.739314
1	-0.299431	-2.305116	0.309406	1	-2.003972	-1.512509	-0.706151	1	-2.004701	-1.514773	-0.709335
6	-1.178306	0.914845	-0.265373	6	-0.258574	1.217493	0.310927	6	-0.261051	1.219091	0.309453
1	-2.024498	1.407325	0.233283	1	-0.626042	1.765096	1.178365	1	-0.626147	1.772481	1.173568
1	-1.072774	1.414924	-1.237318	1	0.307234	1.911859	-0.298829	1	0.306024	1.911073	-0.301701
1	1.479942	-0.135894	-1.394606	1	1.638823	-0.533875	-1.264749	1	1.647134	-0.537924	-1.265811
1	-2.216336	-1.011916	-0.947886	1	-2.163283	1.098886	-0.959200	1	-2.164501	1.100414	-0.962309
1	0.534686	1.919557	0.884988	1	1.306728	0.105044	1.530228	1	1.301196	0.106663	1.533183
	TS40 C	CBS-QB3			TS40 C	BS-APNO			TS ²	40 G3	
6	1.554696	0.560770	-0.101653	6	1.554956	0.549106	-0.097716	6	1.556602	0.548530	-0.096705
6	0.223444	1.130250	-0.103338	6	0.227491	1.136179	-0.085386	6	0.230845	1.137578	-0.083949
6	-0.645423	0.058357	-0.066358	6	-0.642493	0.057958	-0.078488	6	-0.643720	0.058770	-0.079582
8	0.062245	-1.099956	0.063714	8	0.062006	-1.092409	0.063607	8	0.060769	-1.095194	0.063091
6	1.393540	-0.772843	0.027052	6	1.375270	-0.775503	0.023877	6	1.376108	-0.778259	0.024437
1	2.489473	1.095431	-0.147150	1	2.490464	1.066018	-0.143272	1	2.491697	1.066582	-0.143776
1	-0.043578	2.133766	-0.393863	1	-0.030226	2.119588	-0.421557	1	-0.022964	2.118162	-0.432613
6	-2.124257	-0.044164	-0.029922	6	-2.123556	-0.040703	-0.024309	6	-2.126239	-0.039235	-0.023074
1	-2.472155	-0.361962	0.959735	1	-2.453836	-0.353994	0.963509	1	-2.460211	-0.343009	0.965839
1	-2.572193	0.925170	-0.251163	1	-2.568792	0.922243	-0.243695	1	-2.571971	0.921390	-0.250651
1	-2.489161	-0.772916	-0.759260	1	-2.488497	-0.765816	-0.744753	1	-2.494374	-0.769016	-0.736611
1	0.100334	1.786970	1.624616	1	0.144252	1.781331	1.560064	1	0.151487	1.800331	1.552821
1	2.077323	-1.601037	0.102691	1	2.060581	-1.592309	0.092983	1	2.058603	-1.597188	0.093502
	TS41 C	CBS-QB3		TS41 CBS-APNO					TS4	41 G3	
6	-0.710083	-0.048086	-0.252725	6	-0.717942	-0.002774	-0.364821	6	-0.719334	-0.000291	-0.366274
6	0.205712	1.144439	-0.284597	6	0.247012	1.155385	-0.371139	6	0.248929	1.156099	-0.373192
6	1.544267	0.575003	0.212119	6	1.478169	0.541367	0.294701	6	1.478059	0.542423	0.295136
6	1.619898	-0.726204	0.278964	6	1.465813	-0.772978	0.366783	6	1.466645	-0.776071	0.368919
8	-0.125018	-1.158688	-0.406024	8	-0.125461	-1.117822	-0.577063	8	-0.127300	-1.120784	-0.580914
1	0.357471	1.540098	-1.298238	1	0.502103	1.481782	-1.376633	1	0.503762	1.482188	-1.378657

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	2.356300	1.259687	0.440106	1	2.290029	1.156865	0.641483	1	2.286298	1.160646	0.644840
1	-0.170054	1.973352	0.325883	1	-0.134375	2.014582	0.171100	1	-0.131572	2.017102	0.166395
6	-2.086680	0.029651	0.343959	6	-1.962631	0.033722	0.475953	6	-1.962124	0.034593	0.478961
1	-2.693434	0.791302	-0.154139	1	-2.577830	0.892007	0.224554	1	-2.574198	0.897377	0.237497
1	-2.585189	-0.936364	0.265369	1	-2.540111	-0.870662	0.330030	1	-2.545882	-0.864407	0.326215
1	-2.028259	0.307917	1.407250	1	-1.703198	0.108638	1.533482	1	-1.704206	0.097325	1.536815
1	2.324622	-1.515313	0.475646	1	2.104545	-1.568966	0.683627	1	2.111157	-1.564478	0.692913
	TS42 0	CBS-QB3		TS42 CBS-APNO					TS	42 G3	
6	-2.013775	-0.366938	0.577702	6	-2.071419	-0.322483	0.514919	6	-2.080505	-0.314540	0.505247
6	-0.807537	0.152027	-0.178833	6	-0.805745	0.157550	-0.156757	6	-0.803601	0.155182	-0.154562
6	0.280302	-0.871461	-0.515499	6	0.264469	-0.895770	-0.416159	6	0.263028	-0.904386	-0.404032
6	1.656883	-0.510608	0.008315	6	1.672821	-0.513384	-0.026810	6	1.673950	-0.516918	-0.027521
6	2.027924	0.617979	0.552186	6	2.065847	0.621303	0.530176	6	2.065784	0.624947	0.525574
1	2.934243	1.045025	0.953095	1	3.017472	0.994804	0.851035	1	3.020896	0.995707	0.837569
1	2.399893	-1.309318	-0.103793	1	2.417925	-1.274635	-0.225148	1	2.417176	-1.278205	-0.227851
1	0.004200	-1.865292	-0.148936	1	0.000884	-1.825147	0.081448	1	-0.001430	-1.825561	0.108112
1	0.327800	-0.946032	-1.610018	1	0.236132	-1.106304	-1.484949	1	0.228891	-1.134331	-1.468427
8	-0.701774	1.308993	-0.507072	8	-0.663093	1.284924	-0.493108	8	-0.651179	1.286858	-0.491601
1	-2.726105	0.440537	0.740881	1	-2.786274	0.486366	0.574778	1	-2.790135	0.499360	0.554254
1	-1.695907	-0.782727	1.539844	1	-1.838607	-0.682935	1.513712	1	-1.866611	-0.672805	1.508593
1	-2.492721	-1.180133	0.022280	1	-2.498624	-1.154841	-0.038224	1	-2.511295	-1.144745	-0.047679
	TS43 (CBS-QB3			TS43 C	BS-APNO		TS43 G3			
6	-1.442252	1.212899	-0.141451	6	-1.444569	1.200241	-0.147038	6	-1.431288	1.207248	-0.149593
6	-0.969020	-0.218405	0.029415	6	-0.960971	-0.223366	0.026027	6	-0.958971	-0.220377	0.026580
6	0.371660	-0.441087	0.737631	6	0.367998	-0.440107	0.738632	6	0.365761	-0.447471	0.743634
6	1.516431	0.391904	0.168269	6	1.505277	0.402077	0.187009	6	1.508110	0.395342	0.202116
6	2.519668	-0.076534	-0.507065	6	2.505301	-0.073656	-0.518629	6	2.495008	-0.074895	-0.533056
1	3.348920	-0.463308	-1.051205	1	3.320689	-0.460507	-1.071801	1	3.299112	-0.453928	-1.109348
1	1.446248	1.469165	0.366153	1	1.464677	1.464066	0.401377	1	1.482072	1.450019	0.447979
1	0.235055	-0.171049	1.793541	1	0.218153	-0.186555	1.787643	1	0.213554	-0.205479	1.794876
1	0.596785	-1.505093	0.680035	1	0.600943	-1.493498	0.674464	1	0.595473	-1.501182	0.672002
8	-1.619584	-1.156474	-0.366997	8	-1.597016	-1.145793	-0.364541	8	-1.604849	-1.141317	-0.367835
1	-2.471764	1.213173	-0.496612	1	-2.480897	1.190511	-0.455035	1	-2.465607	1.206343	-0.464059
1	-0.809843	1.725280	-0.873363	1	-0.850658	1.695195	-0.909888	1	-0.831750	1.702174	-0.907630

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Ζ
1	-1.367653	1.770965	0.796631	1	-1.334997	1.765996	0.773568	1	-1.325783	1.773506	0.770773
	TS44 (CBS-QB3		TS44 CBS-APNO			TS44 G3				
6	-0.889094	0.160016	0.214602	6	-0.908881	0.147902	0.207838	6	-0.915722	0.140185	0.210750
6	0.038263	-0.630202	1.020699	6	0.029562	-0.585411	1.063961	6	0.008601	-0.592059	1.075379
6	1.885440	-0.598981	-0.189644	6	1.911179	-0.550980	-0.114319	6	1.926964	-0.544786	-0.105750
6	2.201396	0.529887	-0.543327	6	2.212390	0.554320	-0.606715	6	2.221988	0.562210	-0.611507
8	-0.910707	1.380684	0.292609	8	-1.020192	1.339765	0.301003	8	-1.032432	1.338518	0.310135
1	0.485037	-0.138151	1.874683	1	0.408972	-0.061409	1.921237	1	0.391385	-0.070776	1.931831
1	2.060176	-1.651782	-0.138684	1	2.228742	-1.559049	0.004841	1	2.254319	-1.548561	0.022546
1	-0.081092	-1.707524	1.077667	1	-0.056736	-1.655763	1.138278	1	-0.062505	-1.663258	1.140453
6	-1.795342	-0.591023	-0.748545	6	-1.703796	-0.646399	-0.804643	6	-1.690616	-0.645426	-0.824813
1	-2.478785	-1.249126	-0.202744	1	-2.365271	-1.343750	-0.297635	1	-2.325892	-1.385559	-0.346926
1	-2.373065	0.123855	-1.332724	1	-2.291198	0.027140	-1.413351	1	-2.303668	0.028599	-1.406864
1	-1.203743	-1.220661	-1.420568	1	-1.037630	-1.224570	-1.437931	1	-1.009937	-1.174684	-1.484688
1	2.233165	1.579733	-0.721208	1	2.031937	1.582683	-0.800193	1	2.008471	1.585345	-0.801791
	TS45 CBS-QB3				TS45 C	BS-APNO			TS ²	45 G3	
6	-0.587973	1.358624	0.333214	6	-0.603265	1.357283	0.330694	6	-0.600040	1.359804	0.326771
6	-0.941204	-0.062010	0.051807	6	-0.933508	-0.069774	0.038133	6	-0.933646	-0.067814	0.038035
6	0.154641	-1.071651	0.397148	6	0.154301	-1.072853	0.387656	6	0.152800	-1.074244	0.385005
6	1.525902	-0.604239	-0.062007	6	1.525824	-0.602828	-0.055736	6	1.527273	-0.607628	-0.057358
6	1.803152	0.652662	-0.345243	6	1.787608	0.667644	-0.337333	6	1.794721	0.666900	-0.333306
1	2.713050	1.136639	-0.674932	1	2.707839	1.119233	-0.656012	1	2.716261	1.116636	-0.648631
1	2.292781	-1.374422	-0.153271	1	2.296576	-1.354775	-0.131592	1	2.293170	-1.363216	-0.136407
1	0.171858	-1.229948	1.484361	1	0.154546	-1.230323	1.466379	1	0.151862	-1.236268	1.462950
1	-0.113225	-2.027109	-0.058598	1	-0.102914	-2.017845	-0.074487	1	-0.107210	-2.018085	-0.077895
8	-1.971068	-0.400115	-0.492676	8	-1.949462	-0.404272	-0.482190	8	-1.958805	-0.401997	-0.477385
1	-1.227176	2.085017	-0.163207	1	-1.233767	2.070322	-0.176650	1	-1.223999	2.073983	-0.186205
1	0.613065	1.390999	-0.128739	1	0.642994	1.400653	-0.131829	1	0.652023	1.402195	-0.126299
1	-0.408923	1.579435	1.386277	1	-0.455337	1.570078	1.381234	1	-0.458316	1.578625	1.376690
	TS46 0	CBS-QB3			TS46 C	BS-APNO					
6	-1.355492	1.251425	0.263984	6	-1.517316	1.169571	0.222946				
6	-0.967332	-0.112745	0.038810	6	-0.956075	-0.130496	0.036650				
6	0.248473	-0.674047	0.782419	6	0.259812	-0.565485	0.840499				
6	1.554064	-0.472666	0.030618	6	1.568431	-0.416929	0.081703				

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Ζ
6	2.009721	0.679994	-0.450150	6	2.006302	0.689700	-0.483020				
1	2.957741	0.731553	-0.972804	1	2.951118	0.713710	-0.996522				
1	2.151396	-1.368714	-0.113394	1	2.177741	-1.303518	0.021803				
1	0.322007	-0.223447	1.778367	1	0.313048	-0.008376	1.771229				
1	0.066457	-1.741151	0.916081	1	0.112651	-1.607632	1.095908				
8	-1.606356	-0.821863	-0.742179	8	-1.460273	-0.900150	-0.773618				
1	-2.197239	1.644293	-0.292857	1	-2.367127	1.453409	-0.369624				
1	1.462649	1.612459	-0.351327	1	1.446502	1.610201	-0.464706				
1	-0.848764	1.888150	0.979277	1	-1.118682	1.865240	0.938190				
	TS47 0	CBS-QB3			TS47 C	BS-APNO					
6	1.713315	-0.962611	-0.483350	6	1.839991	-0.874090	-0.552189				
6	1.186107	0.209681	-0.063920	6	1.212304	0.238895	-0.009779				
6	-0.446242	-0.345923	1.040287	6	-0.472863	-0.478222	1.005349				
6	-1.406619	-0.572665	0.009041	6	-1.459828	-0.596873	-0.030745				
6	-2.203031	0.391354	-0.523752	6	-2.219290	0.437873	-0.494131				
1	-2.908199	0.168061	-1.314616	1	-2.925839	0.296626	-1.291795				
1	-1.479639	-1.580331	-0.392699	1	-1.575789	-1.563436	-0.495794				
1	-0.083616	-1.195368	1.603996	1	-0.150068	-1.383110	1.489157				
1	-0.497717	0.584619	1.593322	1	-0.513678	0.387649	1.643312				
8	1.266014	1.394172	-0.002772	8	1.220269	1.399919	0.048198				
1	2.778128	-0.983373	-0.687974	1	2.876909	-1.011713	-0.300903				
1	-2.154587	1.416859	-0.173910	1	-2.133890	1.425551	-0.075490				
1	1.156339	-1.882853	-0.475777	1	1.258319	-1.716421	-0.865108				
	TS48 C	CBS-QB3			TS48 C	BS-APNO			TS	48 G3	
6	-0.262296	1.280085	0.431803	6	-0.244565	1.275203	0.451621	6	-0.247497	1.278497	0.446595
6	-0.908535	-0.000987	0.075971	6	-0.904559	-0.006366	0.067779	6	-0.904455	-0.004874	0.067907
6	0.064447	-1.218545	0.090177	6	0.038222	-1.216293	0.100936	6	0.037876	-1.215919	0.098323
6	1.437784	-0.632514	0.170213	6	1.436254	-0.661535	0.145190	6	1.437174	-0.663642	0.148865
6	1.608822	0.551270	-0.510762	6	1.588098	0.570901	-0.505426	6	1.597223	0.567960	-0.503615
1	1.120971	0.718345	-1.465505	1	1.131267	0.723667	-1.469230	1	1.151551	0.721329	-1.472008
1	2.103731	-0.899528	0.983605	1	2.102051	-0.935739	0.944673	1	2.091737	-0.931811	0.959016
1	-0.169772	-1.891325	0.919991	1	-0.191700	-1.831830	0.965365	1	-0.194459	-1.839091	0.956523
1	-0.133468	-1.776817	-0.832211	1	-0.168036	-1.816313	-0.780693	1	-0.165337	-1.811033	-0.787257
8	-2.061112	-0.094926	-0.286035	8	-2.031245	-0.077726	-0.302181	8	-2.038081	-0.079060	-0.299339

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Ζ	At. No.	Х	Y	Z	At. No.	X	Y	Z	
1	-0.735369	2.180957	0.050757	1	-0.680765	2.173865	0.048346	1	-0.683379	2.175012	0.039558	
1	2.472233	1.182671	-0.326488	1	2.448016	1.189660	-0.311501	1	2.454902	1.186693	-0.302329	
1	0.189246	1.369245	1.413709	1	0.128426	1.347030	1.459884	1	0.127705	1.359246	1.452757	
	TS49 (CBS-QB3			TS49 C	BS-APNO		TS49 G3				
6	-0.056376	-1.220200	-0.121183	6	-0.050534	-1.214830	-0.147250	6	-0.052224	-1.216281	-0.144210	
6	0.900532	-0.023685	-0.000009	6	0.892072	-0.022631	-0.004587	6	0.890496	-0.023052	-0.004090	
6	0.058856	1.263864	0.015334	6	0.069639	1.263912	0.002378	6	0.070428	1.265645	0.005716	
6	-1.352213	0.763951	-0.092055	6	-1.348366	0.772696	-0.082731	6	-1.348128	0.775459	-0.083937	
6	-1.422608	-0.581221	-0.106929	6	-1.423207	-0.588777	-0.051893	6	-1.424799	-0.588212	-0.055052	
1	-2.211608	1.422113	-0.123918	1	-2.199038	1.427786	-0.107947	1	-2.196884	1.432388	-0.112804	
1	0.256675	1.826586	0.936124	1	0.280803	1.830422	0.906092	1	0.280848	1.829937	0.910824	
1	0.359675	1.916539	-0.812815	1	0.360218	1.887611	-0.839380	1	0.363644	1.892997	-0.832264	
8	2.099282	-0.082330	0.068704	8	2.068463	-0.085833	0.084232	8	2.072753	-0.087506	0.080885	
1	0.148629	-1.758318	-1.054436	1	0.113896	-1.679295	-1.117358	1	0.115502	-1.689555	-1.109269	
1	-2.335381	-1.143240	-0.256496	1	-2.324921	-1.142520	-0.233385	1	-2.324892	-1.141539	-0.244561	
1	0.120046	-1.928024	0.693803	1	0.165667	-1.960078	0.608361	1	0.160654	-1.957400	0.616469	
1	-1.901446	-0.893270	1.897156	1	-1.781959	-0.939477	1.814264	1	-1.795531	-0.948131	1.813962	
	TS50 CBS-QB3				TS50 C	BS-APNO			TS	50 G3		
6	0.076819	-1.225746	0.100608	6	0.069703	-1.220315	0.097906	6	0.071647	-1.221030	0.097959	
6	-0.883240	-0.033542	-0.032007	6	-0.880027	-0.034115	-0.025378	6	-0.878555	-0.034085	-0.025930	
6	-0.037521	1.196797	-0.066119	6	-0.050610	1.200295	-0.031722	6	-0.052914	1.200832	-0.032787	
6	1.265849	0.853448	-0.137810	6	1.266349	0.855039	-0.144118	6	1.267651	0.856738	-0.143124	
6	1.493970	-0.630587	-0.009749	6	1.489264	-0.632367	-0.010885	6	1.491954	-0.631427	-0.010714	
1	2.115600	-0.852461	0.865307	1	2.095577	-0.856579	0.862656	1	2.098389	-0.858007	0.861646	
1	2.086006	1.553294	-0.249677	1	2.074923	1.552550	-0.263395	1	2.075732	1.554162	-0.262138	
1	-0.455676	2.182325	-0.219621	1	-0.470394	2.168075	-0.227752	1	-0.473893	2.166752	-0.234184	
8	-2.085317	-0.092306	-0.117633	8	-2.061191	-0.093790	-0.123026	8	-2.065939	-0.096341	-0.121930	
1	-0.103834	-1.710891	1.063185	1	-0.108667	-1.707364	1.050379	1	-0.104935	-1.710159	1.049541	
1	2.044329	-1.013134	-0.876401	1	2.026988	-1.019128	-0.871602	1	2.029289	-1.018657	-0.871188	
1	-0.148600	-1.959917	-0.675242	1	-0.155598	-1.939350	-0.680468	1	-0.151322	-1.941603	-0.679519	
1	-0.350541	1.577015	1.903978	1	-0.341369	1.540897	1.799572	1	-0.344448	1.552069	1.798855	
	TS51 (CBS-QB3			TS51 C	BS-APNO			TS	51 G3		
6	-0.242085	-1.234301	0.007257	6	-0.264624	-1.197643	-0.104071	6	-0.272274	-1.197367	-0.093201	
6	-1.041860	0.061763	0.142698	6	-1.046910	0.102122	-0.006121	6	-1.047238	0.108524	0.006695	

Table 16: Cartesian coordinates of all transition state structures.
At. No.	X	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Z
6	0.657859	1.458671	0.251530	6	0.668691	1.457735	0.171832	6	0.685881	1.459018	0.178085
6	1.399825	0.501001	-0.395272	6	1.515327	0.446815	-0.299591	6	1.514330	0.440163	-0.309362
6	1.269600	-0.893030	0.152069	6	1.211606	-0.919536	0.257150	6	1.210258	-0.925796	0.248811
1	1.551499	-0.927219	1.209406	1	1.325464	-0.922592	1.338255	1	1.339600	-0.933041	1.327747
1	1.678662	0.631179	-1.436406	1	1.926646	0.517432	-1.293507	1	1.906570	0.507939	-1.310439
1	0.441960	2.415578	-0.212694	1	0.546545	2.379382	-0.371637	1	0.562730	2.382157	-0.361559
1	0.560075	1.445039	1.332632	1	0.463718	1.525828	1.228590	1	0.497629	1.528964	1.237172
8	-2.162632	0.287119	-0.154922	8	-2.192001	0.290788	-0.031984	8	-2.198511	0.298078	-0.042593
1	-0.618025	-1.942907	0.752258	1	-0.738931	-1.948449	0.518824	1	-0.740744	-1.940999	0.542458
1	1.883404	-1.623809	-0.376319	1	1.858656	-1.691145	-0.141742	1	1.848352	-1.699687	-0.159839
1	-0.456556	-1.659436	-0.979191	1	-0.350628	-1.523713	-1.138105	1	-0.371799	-1.537216	-1.120965
	TS52 C	CBS-QB3			TS52 C	BS-APNO			TS	52 G3	
6	-0.517719	1.276722	0.179974	6	-0.639995	1.120919	0.159367	6	-0.634496	1.144236	0.155305
6	-1.732228	-0.492297	-0.471293	6	-1.616897	-0.508964	-0.401495	6	-1.600247	-0.501960	-0.411710
6	2.103291	-1.165208	-0.111188	6	2.178923	-1.058700	-0.118776	6	2.142483	-1.077953	-0.122100
6	1.601486	-0.057436	0.424178	6	1.589977	-0.013640	0.426068	6	1.575517	-0.022629	0.429528
6	0.865931	1.014218	-0.334208	6	0.788631	1.017391	-0.322076	6	0.797695	1.030372	-0.313950
1	0.826200	0.763989	-1.399750	1	0.799548	0.799951	-1.385023	1	0.814754	0.824045	-1.378752
1	1.713902	0.114239	1.493970	1	1.673751	0.138530	1.492479	1	1.658065	0.120719	1.496437
1	2.626271	-1.900341	0.490072	1	2.741577	-1.758184	0.474414	1	2.686722	-1.796323	0.464664
1	2.008139	-1.378160	-1.171555	1	2.120369	-1.255221	-1.176406	1	2.084897	-1.265761	-1.180655
8	-2.588442	-0.775022	0.227938	8	-2.544820	-0.776692	0.179729	8	-2.522175	-0.789689	0.184350
1	-1.123040	2.015171	-0.336398	1	-1.247239	1.865842	-0.333694	1	-1.235799	1.887787	-0.345731
1	1.442953	1.953367	-0.268216	1	1.262982	1.991834	-0.195853	1	1.283648	1.996954	-0.174725
1	-0.711458	1.175915	1.243595	1	-0.796259	1.088749	1.227722	1	-0.800598	1.117699	1.221528
	TS53 (CBS-QB3			TS53 C	BS-APNO			TS	53 G3	
6	-0.203543	1.133572	-0.116108	6	-0.197681	1.129564	-0.111123	6	-0.201165	1.129904	-0.110746
6	-1.528355	0.549514	-0.086187	6	-1.528896	0.552398	-0.070531	6	-1.531318	0.552012	-0.068441
6	-1.321869	-0.809755	-0.067594	6	-1.312589	-0.813451	-0.074836	6	-1.312855	-0.816517	-0.074943
8	0.006741	-1.086919	0.021545	8	0.010414	-1.076527	0.026855	8	0.012295	-1.078914	0.027087
6	0.680404	0.111966	-0.021116	6	0.669788	0.106748	-0.019628	6	0.670948	0.108166	-0.019330
1	0.037517	2.183597	-0.155418	1	0.050964	2.169471	-0.152917	1	0.043382	2.171046	-0.154607
1	-2.453636	1.037353	-0.347630	1	-2.436738	1.027932	-0.379533	1	-2.436090	1.025938	-0.390155
6	2.162867	0.037560	0.046762	6	2.154281	0.038041	0.042296	6	2.156852	0.040351	0.042089

Table 16: Cartesian coordinates of all transition state structures.

At. No.	X	Y	Ζ	At. No.	X	Y	Ζ	At. No.	Х	Y	Z	
1	2.566168	-0.565239	-0.772513	1	2.543126	-0.556855	-0.778456	1	2.549122	-0.553320	-0.777442	
1	2.589686	1.039028	-0.018165	1	2.577072	1.033269	-0.016396	1	2.579715	1.035327	-0.017123	
1	2.492454	-0.417475	0.985805	1	2.475864	-0.423401	0.971055	1	2.482834	-0.419479	0.969690	
1	-2.037593	0.937945	1.650549	1	-2.029170	0.933083	1.594930	1	-2.040348	0.944054	1.588010	
1	-1.985554	-1.656994	-0.049534	1	-1.973849	-1.651081	-0.050593	1	-1.971743	-1.655753	-0.046847	
	TS54 (CBS-QB3			TS54 C	BS-APNO			TS	54 G3		
6	1.462020	-0.722940	-0.134631	6	-1.438242	-0.727285	0.196254	6	-1.444191	-0.724211	0.198330	
6	1.497559	0.755267	0.093504	6	-1.505522	0.741800	-0.105676	6	-1.505193	0.745664	-0.104914	
6	0.020685	1.170371	-0.043481	6	-0.039524	1.157364	0.026251	6	-0.038421	1.155979	0.023307	
6	-0.868225	0.216427	-0.041559	6	0.829905	0.173163	0.038748	6	0.831819	0.167288	0.036461	
8	0.389586	-1.302040	0.176041	8	-0.381554	-1.287861	-0.247595	8	-0.387104	-1.292227	-0.249360	
1	1.832468	1.025701	1.105167	1	-1.853519	0.946521	-1.116008	1	-1.857840	0.951704	-1.113013	
1	-0.218281	2.230067	-0.091772	1	0.237125	2.197736	0.065259	1	0.237992	2.196122	0.064169	
6	-2.288898	-0.123598	-0.030225	6	2.282101	-0.092343	0.048470	6	2.287270	-0.090954	0.049901	
1	-2.522210	-0.741425	0.843202	1	2.564509	-0.643732	-0.842581	1	2.578785	-0.640274	-0.839163	
1	-2.923192	0.773143	0.010671	1	2.845960	0.837594	0.072984	1	2.848766	0.839823	0.077078	
1	-2.565426	-0.698849	-0.919149	1	2.558431	-0.688730	0.911774	1	2.567002	-0.686092	0.912748	
1	2.176916	-1.211787	-0.808806	1	-1.916378	-1.132296	1.081023	1	-1.914052	-1.123069	1.088940	
1	2.164188	1.266313	-0.609295	1	-2.156000	1.269597	0.584025	1	-2.151525	1.277007	0.585608	
	TS55 (CBS-QB3			TS55 C	BS-APNO			TS			
6	2.625010	-0.430855	0.052758	6	2.635265	-0.419118	0.039863	6	2.633952	-0.415325	0.041050	
6	1.240745	0.022958	0.221760	6	1.206496	-0.062669	0.203854	6	1.203280	-0.062036	0.208286	
6	0.393333	0.890233	-0.272262	6	0.408015	0.902963	-0.219014	6	0.403112	0.903673	-0.223679	
6	-1.049702	1.031730	0.147434	6	-1.058276	1.030944	0.110033	6	-1.062077	1.033130	0.110442	
6	-1.893964	-0.231061	0.067899	6	-1.886184	-0.234250	0.076360	6	-1.884605	-0.236327	0.080139	
8	-1.493107	-1.340527	-0.155647	8	-1.498680	-1.323911	-0.155311	8	-1.489242	-1.328004	-0.159375	
1	2.658080	-1.487659	-0.230192	1	2.735539	-1.393029	-0.428746	1	2.738658	-1.391972	-0.420362	
1	3.200715	-0.320114	0.977204	1	3.138740	-0.459115	1.001006	1	3.143461	-0.447656	0.999113	
1	3.137231	0.144166	-0.734733	1	3.146309	0.314258	-0.582731	1	3.143562	0.312774	-0.588032	
1	0.728855	1.558608	-1.074343	1	0.828931	1.689338	-0.834792	1	0.819195	1.684827	-0.847803	
1	-1.560260	1.799606	-0.445574	1	-1.538949	1.727065	-0.575122	1	-1.544377	1.729142	-0.573356	
1	-1.136093	1.377959	1.188008	1	-1.203531	1.465310	1.100031	1	-1.204019	1.470185	1.099523	
1	-2.976203	-0.046380	0.259270	1	-2.949496	-0.059756	0.296269	1	-2.944521	-0.071958	0.308489	
	TS56 (CBS-QB3			TS56 C	BS-APNO		TS56 G3				

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Ζ
6	-2.083606	-0.822732	0.112577	6	-2.076067	-0.923549	0.130360	6	-2.080026	-0.930252	0.130728
6	-1.472510	0.472061	-0.130522	6	-1.595353	0.434094	-0.170818	6	-1.613240	0.434303	-0.170479
6	-0.689296	1.413026	-0.244090	6	-0.770908	1.364278	-0.248647	6	-0.785411	1.366783	-0.247182
6	1.310010	0.893036	0.469032	6	1.220857	0.915546	0.515479	6	1.233162	0.916468	0.516032
6	1.617048	-0.290298	-0.298657	6	1.655210	-0.193900	-0.313281	6	1.665617	-0.186930	-0.315655
8	1.263070	-1.421991	0.008047	8	1.490423	-1.348473	-0.018473	8	1.501940	-1.349274	-0.019329
1	-1.299189	-1.550462	0.350888	1	-1.247811	-1.553687	0.438285	1	-1.245214	-1.557413	0.425488
1	-2.621284	-1.177021	-0.771673	1	-2.538712	-1.364301	-0.745921	1	-2.551480	-1.373249	-0.739592
1	-2.788484	-0.778640	0.947413	1	-2.813285	-0.895648	0.925454	1	-2.807532	-0.915734	0.934936
1	-0.486753	2.426153	-0.515171	1	-0.656367	2.380060	-0.541986	1	-0.671932	2.383533	-0.538048
1	1.012144	0.761957	1.501746	1	0.950134	0.692533	1.531127	1	0.955213	0.692934	1.528715
1	1.807210	1.822219	0.211213	1	1.645952	1.885320	0.323869	1	1.643914	1.891685	0.325481
1	2.181925	-0.118833	-1.238837	1	2.134269	0.064701	-1.261604	1	2.140903	0.070198	-1.263006
	TS57 (CBS-QB3			TS57 C	BS-APNO			TS	57 G3	
6	-2.597238	-0.479726	0.059536	6	-2.624312	-0.463728	0.063341	6	-2.622686	-0.459111	0.064088
6	-1.183788	-0.087782	0.028335	6	-1.179561	-0.133690	0.080625	6	-1.175447	-0.134180	0.083339
6	-0.436899	0.982671	-0.063174	6	-0.445825	0.945959	-0.119191	6	-0.441091	0.948689	-0.122720
6	1.080707	1.043923	-0.099283	6	1.061339	1.042914	-0.049927	6	1.066239	1.044544	-0.047296
6	1.765089	-0.250916	0.304680	6	1.783650	-0.243794	0.296918	6	1.782602	-0.246090	0.297049
8	1.600450	-1.302696	-0.255005	8	1.635764	-1.264540	-0.278100	8	1.622346	-1.270796	-0.279774
1	-2.844008	-1.012541	0.983203	1	-2.946800	-0.845357	1.027125	1	-2.951401	-0.834495	1.028059
1	-2.840836	-1.143996	-0.775620	1	-2.835742	-1.223553	-0.682360	1	-2.837689	-1.222607	-0.676537
1	-3.255759	0.400615	-0.007756	1	-3.218232	0.419030	-0.170131	1	-3.216033	0.421750	-0.175633
1	-0.926282	1.962267	-0.137785	1	-0.949183	1.877572	-0.353982	1	-0.940545	1.879699	-0.363836
1	1.432457	1.857268	0.543815	1	1.342095	1.810357	0.666931	1	1.347519	1.808607	0.672599
1	1.407499	1.285139	-1.120263	1	1.446082	1.367980	-1.016126	1	1.455174	1.375190	-1.009608
1	2.456108	-0.176200	1.173884	1	2.503920	-0.175676	1.122753	1	2.506511	-0.184888	1.116386
	TS58 (CBS-QB3			TS58 C	BS-APNO			TS	58 G3	
6	-2.560386	-0.615720	0.000000	6	-2.550347	-0.612864	0.000003	6	-2.553077	-0.614412	-0.000001
6	-1.153478	-0.155274	0.000000	6	-1.133912	-0.155075	0.000003	6	-1.137324	-0.154304	0.000001
6	-0.571813	1.033874	0.000000	6	-0.563260	1.042051	0.000000	6	-0.563510	1.045007	0.000003
6	0.943160	1.065322	0.000000	6	0.947791	1.060834	0.000004	6	0.948058	1.061095	0.000000
6	1.327316	-0.412182	0.000000	6	1.324082	-0.410937	-0.000001	6	1.323517	-0.412696	0.000006
		0.0075(0	0.000001	-	0.0(107(0.000000	0.000010	-	0.071050	0.000(01	0.000000

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	X	Y	Z	At. No.	Х	Y	Z
1	-2.774374	-1.231560	0.879573	1	-2.759408	-1.219646	0.875889	1	-2.763522	-1.221552	0.874990
1	-2.774375	-1.231560	-0.879573	1	-2.759405	-1.219653	-0.875879	1	-2.763523	-1.221541	-0.874999
1	-3.263427	0.228937	0.000001	1	-3.234524	0.233005	-0.000002	1	-3.240087	0.228554	0.000005
1	-1.125930	1.972989	0.000001	1	-1.117973	1.967774	-0.000004	1	-1.114763	1.971953	0.000007
1	1.375241	1.557997	0.879721	1	1.372482	1.544316	0.876066	1	1.373476	1.545482	0.874946
1	1.375241	1.557998	-0.879721	1	1.372487	1.544323	-0.876052	1	1.373470	1.545473	-0.874954
1	0.118152	-0.930366	0.000000	1	0.066015	-0.935548	0.000006	1	0.058908	-0.934994	0.000017
	TS59 C	CBS-QB3			TS59 C	BS-APNO			TS	59 G3	
6	-2.583099	-0.527405	-0.115478	6	-2.598611	-0.493525	-0.118062	6	-2.598269	-0.494292	-0.119472
6	-1.285358	0.011111	0.396715	6	-1.278945	0.001275	0.395906	6	-1.277466	-0.002830	0.396867
6	-0.420789	0.764216	-0.318472	6	-0.406711	0.745534	-0.314374	6	-0.406950	0.752559	-0.310798
6	0.849052	1.234617	0.170056	6	0.897352	1.170451	0.183328	6	0.897544	1.174608	0.185169
6	2.218255	-0.148039	-0.148567	6	2.164281	-0.131282	-0.181040	6	2.165228	-0.130860	-0.186628
8	1.938479	-1.257060	-0.019251	8	1.938618	-1.229700	-0.013807	8	1.936638	-1.235736	-0.013413
1	-3.426515	-0.175161	0.489878	1	-3.416688	-0.131758	0.500139	1	-3.417023	-0.141655	0.502491
1	-2.601109	-1.622557	-0.064125	1	-2.636236	-1.580015	-0.096116	1	-2.636615	-1.580567	-0.111116
1	-2.761366	-0.233440	-1.152357	1	-2.774747	-0.169239	-1.137926	1	-2.778016	-0.159352	-1.135044
1	-0.662475	0.985585	-1.356419	1	-0.644495	0.997734	-1.335996	1	-0.649225	1.014761	-1.328188
1	0.990944	1.259363	1.248229	1	1.003944	1.190034	1.258635	1	1.006510	1.191671	1.260011
1	1.317439	2.064351	-0.345185	1	1.319882	2.043742	-0.282954	1	1.321577	2.048277	-0.278391
1	-1.033112	-0.228660	1.428464	1	-1.024795	-0.267615	1.410119	1	-1.020834	-0.282350	1.406719
	TS60 C	CBS-QB3			TS60 C	BS-APNO			TS	60 G3	
6	-0.139543	1.193132	0.025427	6	-0.136739	1.190993	0.024434	6	-0.137945	1.192584	0.024205
6	-1.475950	0.703194	-0.067057	6	-1.473576	0.705063	-0.064224	6	-1.473661	0.707364	-0.063529
6	-1.378818	-0.660402	-0.125953	6	-1.371391	-0.668222	-0.088280	6	-1.373029	-0.668689	-0.087174
8	-0.064113	-1.032701	-0.127841	8	-0.066059	-1.022107	-0.125643	8	-0.065812	-1.023817	-0.126366
6	0.682614	0.104368	-0.013036	6	0.673831	0.103771	-0.012569	6	0.675732	0.104816	-0.013892
1	0.174043	2.221256	0.113223	1	0.180790	2.210008	0.106097	1	0.177825	2.212445	0.106648
1	-2.389149	1.276432	-0.063688	1	-2.381862	1.270762	-0.061980	1	-2.381223	1.274583	-0.060941
1	-1.879562	-1.085956	1.891196	1	-1.829313	-1.110774	1.739608	1	-1.857489	-1.124870	1.737272
1	-2.089375	-1.442606	-0.327018	1	-2.072260	-1.421592	-0.373639	1	-2.070425	-1.419740	-0.386750
6	2.156954	-0.068244	0.049261	6	2.149813	-0.069236	0.044052	6	2.152615	-0.070009	0.045736
1	2.448616	-0.660839	0.921858	1	2.433720	-0.665156	0.906243	1	2.438141	-0.660178	0.910995
1	2.532135	-0.583928	-0.840085	1	2.510212	-0.576864	-0.845753	1	2.517075	-0.582755	-0.838987

Table 16: Cartesian coordinates of all transition state structures.

At. No.	X	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	2.644651	0.904963	0.115390	1	2.635564	0.896259	0.114090	1	2.640318	0.894655	0.110609
	TS61 0	CBS-QB3									
6	-0.690254	-0.007416	0.030733								
6	0.138869	1.123293	0.118224								
6	1.476463	0.771140	-0.073064								
6	1.712583	-0.618316	0.083740								
8	-0.120800	-1.159536	-0.092285								
1	-0.247869	2.133227	0.123432								
1	2.197763	1.433002	-0.541049								
6	-2.189329	0.035968	-0.026021								
1	-2.535014	-0.448165	-0.943795								
1	-2.619015	-0.519335	0.813022								
1	-2.561524	1.061219	0.002109								
1	2.403442	-1.133701	-0.581621								
1	1.638622	-1.077967	1.064514								
	TS62 0	CBS-QB3			TS62 C	BS-APNO					
6	0.525464	0.405736	-0.268022	6	-0.634691	0.579685	0.246220				
6	-0.226716	-0.694700	-0.443425	6	0.391045	-0.018779	0.971518				
6	-1.641418	-0.713719	-0.092046	6	1.640870	-0.404661	0.399855				
6	-2.382277	0.286698	0.406085	6	2.101667	-0.053094	-0.837383				
8	0.814239	1.536721	-0.196586	8	-1.140723	1.528777	-0.170072				
1	0.251880	-1.594174	-0.795539	1	0.091661	-0.410882	1.926248				
1	-2.117629	-1.674108	-0.271022	1	2.265455	-1.018365	1.025854				
6	2.516814	-0.666980	0.408309	6	-2.047884	-1.248136	-0.377281				
1	2.750624	0.121099	1.111112	1	-2.067108	-0.976940	-1.418306				
1	2.285708	-1.645466	0.806612	1	-1.562960	-2.173240	-0.119058				
1	2.968393	-0.613430	-0.575246	1	-2.898264	-0.955042	0.214444				
1	-3.436753	0.145622	0.604973	1	3.068779	-0.377814	-1.173512				
1	-1.967329	1.264479	0.626385	1	1.522180	0.551977	-1.512675				
	TS63 (CBS-QB3			TS63 C	BS-APNO			TS	63 G3	
6	-1.718519	-0.067883	-0.012818	6	-1.734754	-0.048217	-0.031313	6	-1.732961	-0.053512	-0.028654
6	-0.674954	0.910584	0.543122	6	-0.673887	0.858003	0.579517	6	-0.679685	0.863953	0.576314
6	0.544795	1.078284	-0.313228	6	0.530899	1.062920	-0.303166	6	0.526878	1.066694	-0.305637
6	1.636654	0.218718	-0.331605	6	1.650729	0.235485	-0.348860	6	1.646375	0.236682	-0.348753

Table 16: Cartesian coordinates of all transition state structures.

At. No.	X	Y	Ζ	At. No.	X	Y	Z	At. No.	Х	Y	Z
8	-1.470669	-1.176428	-0.403254	8	-1.529566	-1.155444	-0.386429	8	-1.512103	-1.162202	-0.389497
1	-0.401589	0.518442	1.532825	1	-0.384293	0.405719	1.524421	1	-0.389022	0.422908	1.526055
1	0.557235	1.938748	-0.973215	1	0.511060	1.921935	-0.951465	1	0.506290	1.923493	-0.956125
6	1.779569	-0.950134	0.386200	6	1.842330	-0.938968	0.364773	6	1.837661	-0.936308	0.369829
1	0.987726	-1.337545	1.014090	1	1.083663	-1.350196	1.003559	1	1.079287	-1.346362	1.008884
1	2.684440	-1.539593	0.311992	1	2.756692	-1.494293	0.263847	1	2.750545	-1.493729	0.272362
1	2.458966	0.506107	-0.983189	1	2.443944	0.546075	-1.009869	1	2.440575	0.544557	-1.009197
1	-2.764365	0.312398	-0.013673	1	-2.742063	0.380820	-0.114009	1	-2.744678	0.358781	-0.103661
1	-1.162331	1.875452	0.707182	1	-1.124381	1.818156	0.809244	1	-1.135781	1.822909	0.799066
	TS64 0	CBS-QB3									
6	-0.982876	-0.042605	0.037334								
6	0.061462	-1.090928	0.160119								
6	1.370295	-0.831038	0.018220								
6	1.925202	0.536855	-0.146826								
8	-2.146450	-0.332201	-0.183138								
1	-0.306312	-2.107628	0.243689								
1	2.070832	-1.665426	-0.015275								
6	-0.514213	1.378832	0.122389								
1	-1.050589	2.066390	-0.528560								
1	-0.418009	1.749448	1.143700								
1	0.781854	1.261681	-0.205695								
1	2.512117	0.697276	-1.052537								
1	2.422483	0.949169	0.732365								
	TS65 (CBS-QB3			TS65 C	BS-APNO					
6	0.976422	-0.149377	0.038170	6	1.963898	0.518070	0.671407				
6	-0.232096	-0.479784	0.875943	6	1.486499	-0.286412	-0.504347				
6	-1.494790	-0.230305	0.533003	6	0.235149	-0.573487	-0.811808				
6	-1.961457	0.444864	-0.723137	6	-0.972337	-0.149285	-0.025203				
8	1.411416	-0.953367	-0.795450	6	-1.630222	1.072147	-0.355615				
1	-0.019860	-0.994524	1.810167	1	-2.506085	1.354285	0.199609				
1	-2.279090	-0.551004	1.215524	1	1.147673	0.871518	1.289208				
6	1.632107	1.107598	0.251111	1	2.620352	-0.084081	1.293677				
1	2.509188	1.339816	-0.341808	1	2.538447	1.377385	0.334993				
1	1.278410	1.820801	0.985775	1	2.261046	-0.669633	-1.150406				

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Ζ
1	-1.134458	0.738848	-1.371605	1	0.028993	-1.174799	-1.682963				
1	-2.551975	1.337617	-0.489673	8	-1.414396	-0.858759	0.876563				
1	-2.614660	-0.222606	-1.295319	1	-1.273180	1.709199	-1.143231				
	TS66 C	CBS-QB3			TS66 C	BS-APNO			TS	66 G3	
6	-1.336434	0.283531	-0.061830	6	-1.268963	0.224916	-0.065162	6	-1.282131	0.232052	-0.061802
6	0.393236	-1.015376	-0.477449	6	0.344723	-0.910930	-0.591270	6	0.348697	-0.922840	-0.573463
6	1.610499	-0.676631	-0.141174	6	1.572680	-0.630341	-0.194988	6	1.583755	-0.644081	-0.184208
6	2.092523	0.610715	0.467525	6	2.040345	0.583764	0.556336	6	2.061121	0.584730	0.538354
8	-0.947743	1.305688	-0.518672	8	-1.000544	1.239592	-0.602392	8	-0.990660	1.257526	-0.582888
1	-0.085128	-1.861805	-0.946643	1	-0.059841	-1.741414	-1.134042	1	-0.060650	-1.764846	-1.093533
1	2.380248	-1.438196	-0.316695	1	2.329760	-1.367602	-0.432571	1	2.336076	-1.390521	-0.403569
6	-2.158652	-0.566485	0.536650	6	-2.035000	-0.560347	0.664243	6	-2.068778	-0.560457	0.637077
1	-3.095191	-0.161414	0.902379	1	-2.956209	-0.149468	1.033138	1	-2.997331	-0.154277	0.992152
1	-1.918532	-1.601058	0.703137	1	-1.755669	-1.563305	0.899405	1	-1.802007	-1.568425	0.866778
1	1.287611	1.337638	0.554468	1	1.238024	1.286692	0.727818	1	1.264949	1.298754	0.690228
1	2.888084	1.041056	-0.148244	1	2.824039	1.086373	-0.003302	1	2.850571	1.068563	-0.029103
1	2.517819	0.423756	1.458644	1	2.461534	0.289615	1.513734	1	2.477689	0.314118	1.504403
	TS67 C	CBS-QB3			TS67 C	BS-APNO			TS	67 G3	
6	-1.078127	0.229594	-0.186645	6	-1.069414	0.210941	-0.125253	6	-1.068383	0.210364	-0.126288
6	-0.046000	-0.754762	-0.567723	6	-0.024159	-0.678826	-0.632165	6	-0.023848	-0.680751	-0.632521
6	1.347354	-0.569766	-0.368295	6	1.375030	-0.482825	-0.446657	6	1.375232	-0.488167	-0.442175
6	1.953020	0.549509	0.412816	6	1.964608	0.580412	0.433583	6	1.966400	0.579049	0.433215
8	-1.266627	1.415223	-0.267931	8	-1.452102	1.316872	-0.245881	8	-1.445737	1.325029	-0.245909
1	-0.353886	-1.549043	-1.237571	1	-0.342726	-1.393990	-1.369656	1	-0.340657	-1.396036	-1.370969
1	2.010149	-1.337432	-0.755012	1	2.031060	-1.252487	-0.816217	1	2.031200	-1.259998	-0.805867
6	-1.320958	-0.871907	0.718915	6	-1.199830	-0.939591	0.751571	6	-1.208629	-0.939813	0.748858
1	-1.913909	-1.727824	0.430999	1	-1.878015	-1.735357	0.508046	1	-1.891069	-1.731877	0.504227
1	-1.121820	-0.732987	1.777217	1	-0.853322	-0.857001	1.766366	1	-0.868340	-0.862296	1.766049
1	1.279354	1.404516	0.494200	1	1.327167	1.455551	0.490706	1	1.326165	1.451414	0.493706
1	2.882509	0.891562	-0.053314	1	2.931488	0.894124	0.053250	1	2.928912	0.897828	0.046533
1	2.218886	0.233426	1.432521	1	2.123761	0.213526	1.448075	1	2.135040	0.216637	1.447061
	TS68 C	CBS-QB3			TS68 C	BS-APNO			TS	68 G3	
6	-1.207609	0.154176	-0.175231	6	-1.247090	0.122422	-0.168677	6	-1.250910	0.114349	-0.172689
6	0.036892	-0.951958	-0.473976	6	0.098733	-0.947870	-0.449913	6	0.102862	-0.948684	-0.448654

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
6	1.319323	-0.396152	-0.500719	6	1.368061	-0.340422	-0.525780	6	1.369066	-0.333377	-0.531539
6	1.819058	0.657157	0.433675	6	1.875922	0.716917	0.411797	6	1.876968	0.719966	0.411565
8	-1.456213	1.317678	-0.280076	8	-1.674407	1.206509	-0.271500	8	-1.687397	1.203455	-0.268224
1	-0.204920	-1.731805	-1.186525	1	-0.125224	-1.732948	-1.148604	1	-0.119009	-1.735430	-1.146455
1	1.913244	-0.586758	-1.389501	1	1.914375	-0.485533	-1.442491	1	1.911676	-0.471937	-1.450662
6	-0.929440	-0.903607	0.764033	6	-0.843930	-0.895581	0.774331	6	-0.834908	-0.896075	0.775981
1	-1.596911	-1.760140	0.735834	1	-1.481047	-1.765464	0.814632	1	-1.464295	-1.771124	0.831896
1	-0.557776	-0.669249	1.763615	1	-0.467806	-0.595805	1.742284	1	-0.455103	-0.586978	1.739421
1	1.556596	1.664301	0.073288	1	1.544442	1.708589	0.104020	1	1.499770	1.706559	0.145418
1	2.908106	0.620842	0.517578	1	2.960662	0.724106	0.420075	1	2.959824	0.766453	0.378957
1	1.402019	0.563685	1.439629	1	1.539681	0.562186	1.431536	1	1.587845	0.527749	1.439238
	TS69 (CBS-QB3									
6	1.784265	-0.086456	-0.425171								
6	-0.511857	0.885515	0.084484								
6	-1.779127	0.556103	-0.168910								
6	-2.423918	-0.795648	-0.077815								
8	2.913821	-0.279242	-0.145049								
1	-0.221706	1.925663	-0.038432								
1	-2.443453	1.359351	-0.480482								
6	0.589781	-0.028311	0.539522								
1	0.986691	0.272507	1.518320								
1	0.252589	-1.065563	0.627477								
1	-2.845669	-1.084868	-1.046457								
1	-3.257303	-0.777191	0.632941								
1	-1.736587	-1.583177	0.234364								
	TS70 (CBS-QB3			TS70 C	BS-APNO			TS	70 G3	
6	1.997500	-0.118289	0.097655	6	1.948634	-0.121953	0.055853	6	1.950568	-0.119289	0.049411
6	-0.478966	1.089098	-0.399602	6	-0.446999	1.097932	-0.374995	6	-0.447231	1.102600	-0.373726
6	-1.486000	0.188520	-0.498647	6	-1.484258	0.237473	-0.479190	6	-1.485035	0.237270	-0.479069
6	-1.774441	-0.950157	0.428645	6	-1.789999	-0.934985	0.407263	6	-1.787071	-0.937162	0.407206
8	1.728311	-1.124438	-0.392561	8	1.685823	-1.131801	-0.387703	8	1.680800	-1.140567	-0.383479
1	-0.397469	1.832339	-1.188446	1	-0.361534	1.865784	-1.126330	1	-0.363682	1.871178	-1.123928
1	-2.165602	0.291283	-1.340884	1	-2.176929	0.399421	-1.289609	1	-2.179109	0.397525	-1.287746
6	0.549234	1.121647	0.607865	6	0.626567	1.051059	0.613341	6	0.627295	1.057106	0.611847

Table 16: Cartesian coordinates of all transition state structures.

At. No.	Х	Y	Z	At. No.	Х	Y	Z	At. No.	Х	Y	Z
1	1.123915	2.034827	0.702794	1	1.170181	1.970637	0.744300	1	1.172034	1.975764	0.742503
1	0.355757	0.640196	1.562425	1	0.399822	0.582270	1.558530	1	0.402406	0.588889	1.557489
1	-1.658056	-1.907257	-0.092767	1	-1.758442	-1.856569	-0.167984	1	-1.754372	-1.859688	-0.165795
1	-2.810934	-0.911085	0.782439	1	-2.791523	-0.846986	0.821347	1	-2.787203	-0.854051	0.824700
1	-1.118059	-0.969706	1.299432	1	-1.091832	-1.037310	1.227744	1	-1.087636	-1.038235	1.226589

Table 16: Cartesian coordinates of all transition state structures.

References

- [1] J.M. Simmie, W.K. Metcalfe, J. Phys. Chem. A, 2011, 115, 8877-8888.
- [2] A.C. Davis, S. M. Sarathy, J. Phys. Chem. A, 2013, 117, 7670–7685.
- [3] K. Sendt, G.B. Backsay, J.C. Mackie, J. Phys. Chem. A, 2000, 104, 1861–1875.
- [4] Z. Tian, T. Yuan, R. Fournet, P.-A. Glaude, B. Sirjean, R. Battin-Leclerc, K. Zhang, F. Qi, Combust. Flame, 2011, 158, 756–773.
- [5] K.P. Somers, J.M. Simmie, F. Gillespie, U. Burke, J. Connolly, W.K. Metcalfe, F. Battin-Leclerc, P. Dirrenberger, O. Herbinet, P.-A. Glaude, H.J. Curran, Proc. Combust. Inst., 2013, 34, 225–232.
- [6] L. Wei, C. Tang, X. Man, Z. Huang, Energy Fuels, 2013, Just Accepted Manuscript. DOI: 10.1021/ef401809y
- [7] X. Ma, C. Jian, H. Xu, H. Ding, S. Shuai, H. Ding, Energy Fuels, 2013, 27, 6212–6221.
- [8] L.-S. Tran, C. Togbé, D. Liu, D. Felsmann, P. Oßwald, P.-A. Glaude, R. Fournet, B. Sirjean, F. Battin-Leclerc, K. Kohse-Höinghaus, Combust. Flame, 2013, http://dx.doi.org/10.1016/j.combustflame.2013.05.027