Supporting Information

Computational modeling of single- versus double-anchoring modes in di-branched organic sensitizers on TiO_2 surfaces: structural and electronic properties

Joaquín Calbo,^a Mariachiara Pastore,^{b,*} Edoardo Mosconi,^b Enrique Ortí,^{a,*} Filippo De Angelis^{b,*}

^aInstituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna, Spain ^bComputational Laboratory for Hybrid Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123, Perugia, Italy. Fax + 39 075 585 5606 Tel. +39 075 585 5522.

E-mail: chiara@thch.unipg.it, enrique.orti@uv.es, filippo@thch.unipg.it

Scheme S1. Chemical structure of several donor- π -acceptor di-branched dyes used in dyesensitized solar cells.

Figure S1. IR spectra computed at B3LYP/6-31G* in gas phase for system 1 in all anchoring environments modeled (structures **1a-1f** in Figure 4).

Figure S2. IR spectra computed at PBE0/6-31G* in gas phase for system 1 in all anchoring environments modeled (structures **1a-1f** in Figure 4).

Figure S3. IR spectra computed at B3LYP/6-31G* in acetonitrile solution for system 1 in all anchoring environments modeled (structures **1a-1f** in Figure 4).

Figure S4. IR spectra computed at PBE0/6-31G* in acetonitrile solution for system 1 in all anchoring environments modeled (structures **1a-1f** in Figure 4).

System	$Ti_{-}O_{-}(Ti_{-}O_{-})$	$C = O_{1}$	$C = O_{2}$	OH	H····O···
10	$\Pi_1 = O_1 (\Pi_2 = O_2)$	$\frac{0}{1214}$	$\frac{0.02}{1.35}$	0.075	11 03/4
1a 11	-	1.214	1.35	0.975	-
10	-	1.248	1.249	-	-
lc	2.093 (2.019)	1.265	1.275	-	0.973
1d	2.300	1.243	1.311	1.012	1.626
1e	2.241	1.233	1.317	0.999	1.726
1f	-	1.233	1.319	1.000	-

Table S1. Bond distances (in Å) for the different models of **1** optimized at the B3LYP/6-31G* level.

Table S2. Infrared frequencies (in cm⁻¹) of the main vibrational modes present in a dye@semiconductor linkage and the Δv_{as} value at the PBE0/6-31G* level of theory (gas phase).

System	CO asymm	CO symm	C=C	С–Н	Δv_{as}
1a	1740	1340	1570	1340	400
1b	1700	1240	1580	1320	460
1c	1540	1370	1580	1340	170
1d	1650	1440	1570	1350	200
1e	1660	1390	1560	1320	270
1f	1690	1420	1570	1350	270

Figure S5. a) Electrostatic potential averages in the xy plane along the direction normal to the surface of the semiconductor (z) for the dye-sensitized TiO_2 SLAB1. b) Electrostatic potential averages in the region where the potential starts to behave linearly; values of vacuum level are determined at the point where the electrostatic potential profiles start to show this linear behavior.

Figure S6. a) Electrostatic potential averages in the xy plane along the direction normal to the surface of the semiconductor (z) for the dye-sensitized TiO_2 SLAB2. b) Electrostatic potential averages in the region where the potential starts to behave linearly; values of vacuum level are determined at the point where the electrostatic potential profiles start to show this linear behavior.

Figure S7. PDOS for the entire dye (total), the better-anchored branch LUMO(1) and the worse- or non-anchored branch LUMO(2) that contribute to the lowest unoccupied states in $2@TiO_2$ for the M1 (a), BB (b), M1-M1 (c) and BB-BB (d) absorption modes.