
S1

Optimizing nanoporous materials for gas storage
Electronic Supplementary Information (ESI)
Cory M. Simon∗a, Jihan Kimb, Li-Chiang Lina, Richard L. Martinc, Maciej Haranczykc,
and Berend Smita

a University of California, Berkeley. Department of Chemical and Biomolecular Engineering.
b Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291
Daehak-ro Yuseong-gu Daejeon, Korea 305-701
c Lawrence Berkeley National Laboratory

∗E-mail: CoryMSimon@gmail.com

Contents

S1 Molecular simulation details S2

S2 A review of the force field used in the simulations S2

S3 Obtaining geometric parameters S2

S4 Model 0 details S3
S4.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3

S4.1.1 Approach 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4
S4.1.2 Approach 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S5

S4.2 The universal fractional deliverable capacity vs energy of adsorption curve . . . . . . . . . . . . . . . . . . S5
S4.3 Equivalence of U0,opt to Bhatia and Myers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S6
S4.4 The density of sites M is important . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S6

S5 Model 1 details S6
S5.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S6
S5.2 Asymptotic Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S8
S5.3 How unfavorable guest-guest interactions may enhance a material’s deliverable capacity . . . . . . . . . . S8

S6 Model 2 details S9
S6.1 Computing the standard entropy change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S9
S6.2 More detailed description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S9
S6.3 Barrier to observed entropy change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S9

S7 Model 3: Spatially inhomogeneous adsorption site S10
S7.1 Model 3 derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S11

S8 Fitting Isotherm data to a Langmuir model S11

S9 Software S12

S10Discourse on ARPA-E target conditions S12

S11Distributions of properties in the zeolite data base S13

S12Other plots of data from the zeolite database S15

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013



S2

S1 Molecular simulation details

The adsorption data, heat of adsorption, and void fraction for all hypothetical zeolite structures are obtained using our
graphics processing units (GPU) code. The details behind the GPU algorithm are described elsewhere [1]. The energy grid
that stores the guest-host and the guest-guest pair-wise interactions are constructed with a grid size of 0.15 Angstroms.
For the Grand-canonical Monte Carlo simulations, the number of equilibration and production cycles is set to be 1
million and 1.6 million cycles, respectively. The void fraction values were obtained from the GPU routine that computes
the methane Henry coefficient. Specifically, in the particle Widom insertion method, the total number of randomized
methane insertion configurations is set to be NWidom = 35.84 million. Out of NWidom, we count the number of test
points NLow energy where the methane-zeolite framework interaction energy is smaller than 〈U〉 + RT , with 〈U〉 being

the Boltzmann-weighted average energy of the system. The void fraction is then

ε =
NLow energy

NWidom
. (S1)

The Henry coefficient KH is computed by Widom insertions [2] and the expression

KH = β〈e−βU 〉. (S2)

For the isotherm data throughout the paper, the average of two simulations was used.

S2 A review of the force field used in the simulations

Here, we provide a brief validation of the reliability of the force field used to describe the interactions between methane
and the solid zeolites atoms in this work. We used the force field developed in works [3, 4], which was specifically tuned
to reproduce adsorption isotherms of methane and other alkanes in zeolites. Figs S1(a) and (b) show that the force
field reproduces the methane adsorption isotherms in MFI and an AFI-topology zeolite. In addition, Fig S1(c) shows
that molecular simulations using the force field can reproduce experimental measurements of the diffusion coefficient of
methane as a function of loading in MFI. Two reviews describing how these simulations have been used to increase our
understanding of adsorbates in zeolites are in Refs. [5, 6].

S3 Obtaining geometric parameters

Our open source porous materials analysis suite, Zeo++ [11], enables the rapid and high-throughput calculation of
geometric properties and descriptors for all classes of porous materials. Zeo++ utilizes the Voronoi decomposition to
construct a three-dimensional, periodic graph spanning the pore space inside a material. Briefly, the vertices of this graph
correspond to the centers of local cavities in the structure (positions equidistant between four framework atoms), and the
edges between vertices correspond to the direct pathways between these positions (equidistant between three framework
atoms). This graph can be inspected to identify common material descriptors such as the diameter of the largest included
sphere, corresponding to the largest spherical cavity inside a material. Furthermore, by utilizing a variant on the Dijkstra
shortest path algorithm, paths traversing the material, corresponding to channel systems, can be identified with respect to
a given probe radius. By exploiting this knowledge, the other descriptors utilized in this work, such as accessible surface
area, can be efficiently computed through Monte Carlo sampling on only the probe-accessible regions of the structure.
The algorithms for calculation of these and further descriptors are provided in detail in [11].
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(a) (b)

(c)

Figure S1. The force field [3] used in this work reproduces methane adsorption isotherms in (a) MFI (b) AlPO4-5
(AFI-topology) zeolites. MFI experimental data is from [7,8]. AlPO4-5 experimental data is from [9]. (c) The same
force field in [3] was later used to simulate the diffusion of methane in MFI as a function of loading in Ref [10]. The
molecular simulations agree remarkably well with the data. Figs (a) and (b) were reproduced from Ref. [3] and (c) from
Ref. [10] using Plot Digitizer.

S4 Model 0 details

S4.1 Derivation

Consider a gaseous phase of methane in equilibrium with an adsorbed phase of methane in a volume V of our model
nanoporous material. Our goal here is to find the isotherm, i.e. the loading as a function of pressure (related to chemical
potential).
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S4.1.1 Approach 1

The condition for equilibrium between the adsorbed phase (ads) and the ideal gas phase (ig) is the equality of the chemical
potential in the two phases:

µads = µig. (S3)

We obtain both µads and µig using the identity that relates the chemical potential to the Canonical partition function Q:

µ =

(
∂A

∂σ

)
T,V

= − 1

β

(
∂ lnQ

∂σ

)
T,V

. (S4)

When considering the adsorbed phase, M plays the role of volume. Our approach is to find the Canonical partition
function for an ideal gas Qig and for the adsorbed phase Qads, perform the derivative in eqn S4, and equate the two
chemical potentials.

The ideal gas. The single-particle partition function is generally:

q(V, T ) =
1

Λ3

∫
Ω

e−βU(x)dx, (S5)

where Ω represents the system volume and Λ = Λ(T ) is the thermal de Broglie wavelength. Because ideal methane
molecules do not interact, U(x) = 0 and we arrive at q(V, T ) = V/Λ3. Because ideal gas particles behave independently
of one another, the Canonical partition function for an entire system of σ ideal gas particles is:

Qig(σ, V, T ) =
q(V, T )σ

σ!
, (S6)

where the factorial term takes into account that the particles are indistinguishable. Using Stirling’s approximation for
the factorial term and the identity in eqn S4, we take the derivative of Qig to arrive at the chemical potential for an ideal
gas:

µig =
1

β
ln
(
Λ3ρ

)
, (S7)

where ρ is the density of the ideal gas.
The adsorbed phase. The Canonical partition function q of a single guest particle in a single adsorption site of our

model material, considered the unit cell Ω in Fig 3, is found by using eqn S5 and the energy landscape in eqn 1:

q =
1

Λ3
ε
V

M
e−βU0 , (S8)

since the volume of the unit cell is the total macroscopic volume V under consideration divided by the number of sites in
that volume, M . The void fraction ε is the ratio of the volume of the binding pocket Ωs to the volume of the entire unit
cell Ω. Since the particles do not interact, the Canonical partition function Q(σ,M, T ) for σ molecules adsorbed onto a
solid with M sites is then:

Q(σ,M, T ) =
M !

σ!(M − σ)!
qσ. (S9)

The binomial term
(
M
σ

)
counts the number of arrangements of the σ molecules among the M sites. Using Stirling’s formula

for the
(
M
σ

)
term and taking the derivative as in eqn S4, we arrive at the chemical potential for the adsorbed phase:

µads = − 1

β
ln

(
M − σ
σ

1

Λ3
ε
V

M
e−βU0

)
. (S10)

Finally, we equate the chemical potentials due to the equilibrium condition in eqn S3 and solve for the number of
occupied sites σ:

σ =
βεV e−βU0P

1 + βεV e−βU0

M P
, (S11)
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where we used the ideal gas law to relate the density to the pressure via ρ = Pβ. Since βεV e−βU0

M is constant with
temperature, we define it as a constant K to get the familiar Langmuir isotherm for fractional occupancy:

σ

M
=

KP

1 +KP
. (S12)

S4.1.2 Approach 2

In the second approach, we directly find the average number of particles in the adsorbed phase when the particle number
is allowed to fluctuate in the Grand-canonical ensemble. The Grand-canonical partition function under the equilibrium
condition µ = µig = µads is:

Ξ(µ,M, T ) =

M∑
σ=0

Q(σ,M, T )eβµσ. (S13)

We seek to derive the Langmuir isotherm by finding the average σ:

〈σ〉 =

M∑
n=0

nP (N = n) =
1

Ξ

M∑
n=0

ne−βnU0eβµn =
∂ ln Ξ

∂(βµ)
. (S14)

First, we use eqn S9 to write the Grand Canonical partition function in eqn S13 as:

Ξ(µ,M, T ) =

M∑
σ=0

(
M

σ

)[
εV

MΛ3
e−βU0eβµ

]σ
, (S15)

which is a binomial expansion of the function (1 + εV
MΛ3 e

−βU0eβµ)M . Taking the logarithm and performing the derivative
in eqn S14:

〈σ〉 =
εV e−βU0eβµ

Λ3 + εV e−βU0

M eβµ
. (S16)

Using the ideal gas law and the expression for the chemical potential of the bulk gas in equilibrium with the solid in eqn
S7, we write this as:

〈σ〉 =
βεV e−βU0P

1 + βεV e−βU0

M P
, (S17)

which is equivalent to eqn S11 and therefore eqn. S12 in Approach 1, and we arrive at the Langmuir isotherm.

S4.2 The universal fractional deliverable capacity vs energy of adsorption curve

Using the definition of the effective heat of adsorption U∗ in eqn 8, we substitute:

U0 = U∗ +RT ln
(
β
ε

M

)
, (S18)

into eqn S3 to get:
D

M
=

e−βU
∗
P2

1 + e−βU∗P2
− e−βU

∗
P1

1 + e−βU∗P1
, (S19)

This theoretical curve of D
M depends only upon the effective heat of adsorption, and not the volume of the adsorption

pocket in the material. It is plotted in Fig 4 as the black line.
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S4.3 Equivalence of U0,opt to Bhatia and Myers

Here, we show that the eqn derived in [12] for the optimum heat of adsorption:1,

∆HBM =
RT

2
log

(
PLPH
(P ◦)2

)
+ T∆S◦, (S20)

for a Langmuirian material is consistent with eqn 4 for our model material in model 0 by applying eqn 20 to the model
material in model 0. The term ∆S◦ is the standard entropy change upon adsorption with reference pressure P ◦ = 1 bar.
The details of the reference state are in [13], briefly,“The reference states for the standard entropy of adsorption are a
hypothetical perfect gas at one atmosphere for the gas phase and a hypothetical gas in the nanopores which obeys Henry’s
law exactly”. In [13], it is show that ∆S◦ can be written:

∆S◦ =
∆H

T
+R ln

(
KHP

◦

M

)
, (S21)

where KH is Henry’s constant and M is the saturation loading. For model 0:

KH = βεe−βU0 (S22)

since KH = β〈e−βU 〉 [2]. Thus, the standard entropy change of adsorption for model 0 is:

∆S◦ = −R+R ln
(
βP ◦

ε

M

)
. (S23)

If we plug the expression for the standard entropy change upon adsorption in eqn 23 into Bhatia and Myers’ formula in
eqn 20, we arrive at:

∆Hopt = U0,opt −RT = RT ln

(√
PLPH
RT

ε

M

)
−RT, (S24)

which is equivalent to eqn 4 in the main text. This completes our proof of equivalence.

As a second check, we note that our Langmuirian K := βεV e−βU0

M for U0,opt is equal to 1√
PLPH

, the optimal Langmuirian

constant derived in [14].

S4.4 The density of sites M is important

A material with a suboptimal heat of adsorption can have a much higher deliverable capacity than a material with an
optimal heat of adsorption if the latter has a smaller density of sites. See Fig S2 for a sketch to see how two Langmuirian
materials that are equally porous, each tuned to have the optimal heat of adsorption, differ in deliverable capacity by a
factor of 8!

S5 Model 1 details

S5.1 Derivation

With guest-guest interactions, the total energy U of a system of σ guest molecules adsorbed in the model material is:

U = σU0 +
∑
i

∑
j>i

zUgg
σ

M
= σU0 +

1

2
σzUgg

σ

M
, (S25)

1Note that the units are consistent here because we substituted one unit volume in the Langmuir isotherm expressions for σ
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(a) (b)

Figure S2. Materials x and y have unit cells, the blue box, of equal sizes. Material A has M = 1 sites of radius 2R,
and material B has 8M sites of radius R, making them equally porous. Each material has individually tuned heats of
adsorption to the optimum, but they differ in deliverable capacity by a factor of 8 because material A has a lower
density of sites.

where the first term is the guest-framework interaction energy and the second term is the guest-guest interactions (the
factor of 1

2 avoids over-counting). Now, we write the canonical partition function as:

Q(σ,M, T ) =
M !

σ!(M − σ)!

1

Λ3

∫
Ω

e−βUdx1dx2 · · · dxσ. (S26)

Using eqn S25 and the void fraction ε, we write evaluate the integral to get:

Q(σ,M, T ) =
M !

σ!(M − σ)!

1

Λ3

(
V

M
ε

)σ
e−βσU0−βzUgg σ

2

2M . (S27)

Following Approach 1 above, we apply Stirling’s formula for the factorial terms and take the derivative of the logarithm
with respect to σ to get an expression for µads and then equate this to µig to arrive at:

M − σ
σ

εV

MΛ3
e−βU0e−βzgσ/M = (Λ3ρ)−1. (S28)

In contrast to the Langmuir isotherm derivation, we cannot solve this equation explicitly for σ. However, we gain some
intuition by writing this as:

σ

M
=

Ke−θσ/MP

1 +Ke−θσ/MP
, (S29)

where θ := βUggz is a guest-guest interaction dependent term and K := βεV e−βU0

M as previously.
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S5.2 Asymptotic Expansion

To gain insight into how the guest-guest interactions cause a deviation from a Langmuirian curve, we seek to make an
approximation to eqn S29 for small θ. We Taylor expand the exponential term in eqn S29 as e−θσ/M ≈ 1 − θσ/M and
get a quadratic equation for σ

M :

KPθ
( σ
M

)2

− (1 +KP (1 + θ))
σ

M
+KP = 0. (S30)

Next, we seek an asymptotic expansion:
σ

M
∼ σ0 + θσ1 + ... (S31)

and substitute this into eqn S30. Equating terms at order 1, we get the Langmuir isotherm at leading order:

σ0 =
KP

1 +KP
, (S32)

and at order θ we get the correction term:
σ1 = σ2

0(σ0 − 1), (S33)

which is the expression in eqn 11.

S5.3 How unfavorable guest-guest interactions may enhance a material’s deliverable ca-
pacity

Fig 3(a) shows an example material with guest-guest interactions turned off, where the isotherm would be described by
the Langmuir isotherm (blue curve), as well as when guest-guest interactions are favorable for adsorption (decreasing
the energy of the site, Ugg < 0) and unfavorable (increasing the energy of the site, Ugg > 0). Using PL = 5.8 bar and
PH = 65 bar, we see that the unfavorable guest-guest interactions, in this case, enhance the deliverable capacity because
they reduce uptake at PL more than they reduce uptake at PH . In contrast to what we found with SBN, here favorable
guest-guest interactions erode the deliverable capacity by increasing adsorption at PL but not at PH .

(a)

Figure S3. An example of how guest-guest interactions that lower the energy of an adsorption pocket can decrease the
deliverable capacity by increasing uptake at PL more than it increases uptake at PH . Here, repulsive guest-guest
interactions would enhance the deliverable capacity.
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S6 Model 2 details

S6.1 Computing the standard entropy change

We use equation S21 to calculate the standard entropy change upon adsorption. The enthalpy change upon adsorption
is ∆H = 〈U〉 − RT . [To help keep track of the signs: 〈U〉 will be negative for a good material.] The Henry coefficient
is computed by 〈βe−βU 〉. Finally, we get the maximum loading following the method outlined in [13], where we first
compute the Helium pore volume Vp:

Vp =

∫
e−βUHe−sdV, (S34)

from Monte Carlo simulation. The term UHe−s is the solid-helium interaction energy. In the effective potential in eqn 12,
we simply use the helium-methane Lennard-Jones parameters to model helium adsorption. We used a surface density of
carbon atoms α = 0.13 Å−2. From the Helium pore volume, we estimate the maximum loading by:

M = VpρCH4,l, (S35)

where ρCH4,l = 422.62 kg/m3 is the liquid density of methane.
The fractional deliverable capacity was computed by writing the isotherms for model 2 as:

σ =
KHP

1 + KH
M P

. (S36)

S6.2 More detailed description of the model

The unit cell of the model material in model 2 is assigned a cube with dimension 2R + σO−O21/6, where σO−O = 3.1Å
from the Universal Force Field [15]. We use σ = σCH4−O from [16] for eqn 12, which is the force field used for all zeolite
molecular simulations in this work. Choosing this unit cell corresponds to the assumption of spheres packed in a cubic
lattice, where the spherical shells, composed of O atoms here, are at their optimal distance apart at most. To be precise,
the energy landscape of the material is defined as:

U(r) =

{
Ueff (d = R− r), r < R
∞, r ≥ R. , (S37)

where Ueff (d) is given in the main text eqn 12 from the work in [17].
Using the energy landscape in eqn S37, we perform Widom insertions [2] in Python using the numpy package to get

the Henry coefficient KH from equation S2. For structures with loading greater than 20 v STP/v at 200 bar, we use the
saturation loading M computed from the Langmuir fitting routine. For structures with loading less than 20 v STP/v at
200 bar, we assume that the isotherm was not simulated up to a high enough pressure for the Langmuir fitting routine
to accurately estimate the saturation loading. Thus, for these structures, we use the void fraction computed from Zeo++
and the liquid density of methane to estimate the max loading M , similar to eqn S35. We sample the energy of adsorption
to calculate the ensemble average heat of adsorption 〈U〉 as well. With KH and 〈U〉, we calculate ∆S from eqn S21 and
∆H = 〈U〉 −RT . This is how Fig 8(d) was generated.

S6.3 Barrier to observed entropy change

The work in [18] intuitively pointed out that there is a bound to the change in entropy that a guest molecule can experience
in the framework. In accordance, we see a sharp bound in Fig 8(a). However, there are some outliers that we omitted,
and we show them here in Fig S4(a). Fig S4(b) shows that these outliers have a very low void fraction and thus experience
the greatest change in entropy upon adsorption (vie eqn 23).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2013



S10

(a) (b)

Figure S4. Outliers in the dataset, as they experience entropy changes > 120 J/mol-K. These structures have a very
small void fraction, consistent with eqn S23.

S7 Model 3: Spatially inhomogeneous adsorption site

In models 0 and 1, the energy of a guest molecule inside the adsorption site is assumed to be spatially homogeneous. As a
consequence, the energy of adsorption in models 0 and 1 does not depend on temperature. If we increase the temperature
in a system with a real material, methane will explore higher energy configurations and, as a consequence, the heat of
adsorption will increase (become less negative). To include this effect, we consider a spherical adsorption site with a
radially symmetric harmonic energy landscape (r = 0 is the center of the site with radius r0 in Fig 3):

U(r) =

{
−Ud + 1

2kr
2, r < r0

∞, r ≥ r0.
(S38)

As T → 0, entropy becomes irrelevant and the adsorbed particle resides at the center of the adsorption site r = 0. As the
temperature increases from zero, entropic considerations take effect, and the guest molecule explores a greater region of
the adsorption site, and hence a greater region of the bottom of the harmonic potential in eqn S38. The ensemble average
energy of adsorption with the energy landscape in eqn S38 is:

− Ud +
3

2
RT. (S39)

The increase with temperature reflects the greater exploration of the trough in the harmonic potential at higher temper-
atures in the ensemble. If the harmonic potential is steep enough (i.e., sufficiently strong such that the methane remains
close to the minimum), we can derive from statistical mechanics an approximate isotherm of the model material in Fig 3
with the energy landscape in eqn S38:

σ

M
=

βΨeβUdP

1 + βΨeβUdP
, (S40)

where

Ψ :=
√

2

(
πRT

k

) 3
2

. (S41)

Comparing eqn S40 with the Langmuirian isotherm in eqn 2, Ψ is the analogy of ε
M – the volume of an adsorption site– in

model 0. As k increases, i.e., as the harmonic potential well becomes steeper, the effective volume per site Ψ decreases.
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As the temperature increases, the effective volume per site Ψ increases since an adsorbed guest particle can explore more
of the trough for a fixed k. This derivation gives a natural definition for the void fraction of a material with a harmonic
potential and shows that the effective volume per adsorption site scales with T

3
2 .

Defining the deliverable capacity with the isotherm in eqn S40 and optimizing with respect to Ud results in:

Ud,opt = Ud,opt(Ψ) = RT ln

(√
PLPH
(RT )

ψ

)
. (S42)

essentially the same as eqn 4. In real materials, whose energy landscape is a more complicated function of space than the
prescription in eqn 1, the void fraction is ill-defined without a threshold energy beyond which the framework is deemed
as unoccupiable by a guest molecule. Still, the result in eqn S40 suggests that real materials may be analyzed in the
context of models 0 and 1, despite the “binding site” region Ωs depicted in Fig 3 being ambiguous in real materials. i.e.,
the energy landscape of a real material can be mapped to a void fraction ε to be used in eqn 4. For a Harmonic potential,
the mapping is ε

M → Ψ. We found that an energy threshold of 〈U〉 + RT to determine which points are occupiable
for defining the void fraction for Fig 4 provided a reasonable mapping of for the Langmuirian zeolites with an energy
landscape defined by a pair-wise Lennard-Jones model.

S7.1 Model 3 derivation

Here we derive the isotherm in eqn S40. The single particle partition function for a single site is:

q =
1

Λ3

∫
Ω

eβUd−
1
2kβr

2

dx =
eβUd4π

Λ3

∫ r0

0

r2e−
1
2kβr

2

dr. (S43)

Next, we rescale the r in the integral above by r̂ := r
r0

to get a new integral:

Λ3q =

∫ 1

0

r3
0 r̂

2e−
1
2kβr

2
0 r̂

2

dr̂. (S44)

Our approximation is as follows. If 1
2kβr

2
0 >> 1, the above integration in r̂ can be approximated by the same integral

from 0 to ∞ since
∫∞

1
(· · ·)dr̂ ≈ 0. With this approximation, we get:

q =
1

Λ3
4π

√
π

2

(
RT

k

) 3
2

eβUd . (S45)

In words, the approximation is reasonable if the harmonic potential in eqn S38 is steep in the scaled coordinate r̂. Using
this single-particle partition function for constructing the Grand Canonical paritition function, the logic starting from eqn
S15 follows for deriving 〈σ〉 for the harmonic potential, and we arrive at eqn S40.

The ensemble average heat of adsorption in expression S39 is calculated by the expression:∫
Ω
Ue−βUdx∫

Ω
e−βUdx

, (S46)

and invoking the same approximation above under the assumption 1
2kβr

2
0 >> 1.

S8 Fitting Isotherm data to a Langmuir model

Here we derive the equations for fitting a Langmuir model to adsorption data. We have N pressure-loading data pairs
(Pi, Li) for i = 1, ..., N organized into a vector P,L ∈ RN . We also have the Henry coefficient from molecular simulation.
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The model prediction g ∈ RN is a function of the maximum uptake capacity M since we already have the Henry coefficient
KH from simulation:

gi(M) :=
KHPi

1 + KH
M Pi

. (S47)

To find the M in the Langmuir model that fits the data, we solve the nonlinear minimization problem

min
M

1

2
||g(M)− L||2. (S48)

The M∗ that is the minimizer satisfies
A(M∗)T (g(M∗)− L), (S49)

where A is the N by 1 Jacobian matrix of g. We solve the minimization problem using the Gauss-Newton method [19].
We start with a guess M0 and iterate on M using a search direction pk:

Mk+1 = Mk + pk. (S50)

The search direction is found by, at each iteration, finding the solution pk to the linear least squares problem:

min
p
||A(Mk)p− (L− g(Mk))||. (S51)

For this, we use the Scipy package in Python. The convergence criterion is that the relative change in the sum of square
errors is less than 0.0000001.

The Langmuir constant K is then determined by K = KH
M , where M is found by the above fitting routine.

S9 Software

The Matplotlib package in Python, free and open-source software, was used to make the plots in this paper. VisIt
Visualization tool was used to make Fig 7(b).

S10 Discourse on ARPA-E target conditions

The Advanced Research Projects Agency Energy of the US Department of Energy posed the operating conditions of 65
to 5.8 bar for a nanoporous material in a vehicular natural gas fuel tank [20]. Here, we justify their target in contrast to
the older DOE target of 35 to 1 bar operating pressures.

Charging pressure PH
The charging pressure should consider:
(i) the threshold pressure above which a two-stage compressor is insufficient (considering infrastructure costs for

refilling stations)
(ii) Tank manufacturing standards– 65 bar is a threshold pressure for cheaper, conformable tanks.
Thus, we use PH = 65 bar for our screening. Note that an adsorbent will certainly store more at 65 bar than 35 bar.

If a material is worse off at the 65 - 5.8 bar range, it is because the material takes up a substantial amount of cushion gas
at the discharge pressure PL in comparison to the methane adsorption gained by charging at 65 bar instead of 35 bar.

Discharge pressure PL
Concerning the discharge pressure, the old DOE condition of using 1 bar seems impractical because there must be a

sufficient pressure differential to drive methane flow out of the adsorbent bed and into the engine. The methane flow rate
to the engine must be above a threshold value for the car to keep driving.

Choosing a discharge pressure to evaluate an adsorbent depends on the kinetics of methane inside the adsorbent, the
surface area of the bed, the size of the pipes from the tank to the engine, the distance of the tank from the engine, the
required flow rate, etc. There may be some engineering solutions to allow the adsorbent to reach further depletion before
there is an insufficient flow rate to the engine. The discharge pressure of 5.8 bar is thus debatable to an engineer, but for
now, however, 1 bar seems too impractical, so we chose 5.8 bar for our meta-screening.
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S11 Distributions of properties in the zeolite data base
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Figure S5. Here, we present probability distributions of different properties of the hypothetical zeolite structures in the
SLC database [21] analyzed in this work (those with pore size accessible to methane). For comparison, we also show the
distribution for the materials that have the best fit to the Langmuir isotherm in our data fitting routine. These
materials were analyzed in the context of model 0. We see that these Langmuirian materials explore a range of these
properties, and are thus a diverse set for the analysis.
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S12 Other plots of data from the zeolite database

Figure S6. Ranking of hypothetical zeolites with the top deliverable capacities in both the 65 vs 5.8 bar and 35 vs 1
bar pressure range. We see that the two outliers in the 35 vs 1 bar pressure range are the zeolites PCOD8124791 and
PCOD8330975 discussed in the main text.

(a) (b)

Figure S7. (Top row) Loading at 5.8 bar (a) and 65 bar plotted against the largest included sphere diameter. Red
vertical line is hard-sphere diameter of methane. Black vertical lines denote (a) 5.1 A (b) 4.8 A.
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(a) (b)

Figure S8. Deliverable capacity (a) and loading at 5.8 bar (b) plotted against accessible surface area. We still see a
positive correlation between surface area and deliverable capacity, but the heat of desorption actually decreases the
deliverable capacity at high surface areas, unlike what is seen in the loading correlations.

(a)

Figure S9. Gravimetric deliverable capacity against energy of desorption color-coded according to the void fraction.For
comparison, ARPA-E has a target of 0.5 g CH4/g sorbent = 0.69 m3 STP/kg sorbent to avoid massive tanks. The
zeolites thus do not store a high amount of methane per mass.
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(a)

Figure S10. Entropy-enthalpy correlation color coded according to the void fraction to corroborate our derivation that
the entropy change upon adsorption is related to the void fraction.

(a)

Figure S11. The top two performing 35 to 1 bar deliverable capacity zoelites have heats of adsorption that increase
with loading, suggesting that attractive guest-guest interactions are present.
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(a)

Figure S12. The IZA zeolite structures are plotted as pink points in (∆S◦,∆H) space for comparison with the
hypothetical zeolites.
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