Long-range proton-coupled electron transfer in phenol $-\mathrm{Ru}\left(2,2^{\prime} \text {-bipyrazine }\right)_{3}{ }^{2+}$ dyads
 Catherine Bronner, and Oliver S. Wenger*

University of Basel, Department of Chemistry, Spitalstrasse 51, CH-4056 Basel, Switzerland E-mail:oliver.wenger@unibas.ch

Supporting Information:

Syntheses of the two dyads S2
Synthesis of 2,2'-bipyrazine S9
Experimental methods / apparatus S10
Additional optical spectroscopic data S11
${ }^{1} \mathrm{H}$ NMR spectra of new key compounds S13
References S26

Syntheses of the two dyads

This synthesis followed a previously published protocol. ${ }^{1}$ To a cooled suspension of 2-aminopyrazine (1) $(20.0 \mathrm{~g}, 210 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~L})$, NBS $(37.55 \mathrm{~g}, 211 \mathrm{mmol})$ was added. This suspension was stirred under N_{2} and allowed to warm up gently to room temperature overnight. After 40 h of stirring, the brown mixture was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 300 \mathrm{~mL})$. Then the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 300 \mathrm{~mL})$ and dried over anhydrous MgSO_{4}. After purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95 / 5, \mathrm{R}_{f}=0.5\right)$, 5-bromo-2aminopyrazine (2) was obtained as a brown solid ($13.63 \mathrm{~g}, 78.3 \mathrm{mmol}, 37 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 4.63(\mathrm{~s}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 127.2,131.7,144.2,153.4 \mathrm{ppm}$. Elemental analysis: calculated C $27.61, \mathrm{H} 2.32, \mathrm{~N} 24.15$; measured C $27.52, \mathrm{H} 2.18, \mathrm{~N} 24.31$.

This synthesis followed a previously published protocol. ${ }^{2}$ 5-bromo-2-aminopyrazine (2) ($5.01 \mathrm{~g}, 28.8$ $\mathrm{mmol})$ was dissolved in aqueous $\mathrm{HI}(57 \%$ in water, 40 mL$)$ at $0{ }^{\circ} \mathrm{C}$ then $\mathrm{I}_{2}(5.11 \mathrm{~g}, 20.10 \mathrm{mmol})$ was added as a solid over 1 h . Solid $\mathrm{NaNO}_{2}(8.38 \mathrm{~g}, 121 \mathrm{mmol})$ was then added in small amounts over a period of 3.5 hours. Then the reaction was quenched by addition of 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ solution $(250 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(150 \mathrm{~mL})$. The resulting aqueous mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 500 \mathrm{~mL})$, and the organic layer was washed again with a 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ solution $(1 \times 500 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 500 \mathrm{~mL})$ before drying over MgSO_{4}. Purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane $1 / 1, \mathrm{R}_{f}=0.6$) afforded 2-iodo-5-bromopyrazine (3) $(3.56 \mathrm{~g}, 12.5 \mathrm{mmol}, 43 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.50(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.62(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 115.0,140.5,148.7,152.8 \mathrm{ppm}$. Elemental analysis: calculated C 16.86, H 0.71, N 9.83 ; measured C 16.98, H 0.77, N 9.75.

To 2-iodo-5-bromopyrazine ($3.00 \mathrm{~g}, 10.5 \mathrm{mmol}$) in 395 mL toluene were added (2,5-dimethyl-4(trimethylsilyl)phenyl)boronic acid (4) ${ }^{3}(3.04 \mathrm{~g}, 13.7 \mathrm{mmol})$ in 53 mL EtOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}(3.69 \mathrm{~g}$, $34.86 \mathrm{mmol})$ in $24 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. After bubbling N_{2} through the solution for 1 hour, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(604 \mathrm{mg}$, 0.52 mmol) was added and the reaction mixture was refluxed under N_{2} for 65 hours. Progress of the reaction was monitored by ${ }^{1} \mathrm{H} N \mathrm{NMR}$ in CDCl_{3}, and the reaction was stopped once there was no pyrazine starting material left. After cooling to room temperature, $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400$ mL) were added. The organic layer was separated, dried over anhydrous MgSO_{4} and evaporated. Pentane ($\sim 200 \mathrm{~mL}$) was added and a yellow impurity was filtrated. Column chromatography of the filtrate $\left(\mathrm{SiO}_{2}\right.$, pentane to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane $1 / 4$ to pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{R}_{f}=0.7$ (in pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)) gave the desired product (5) (1.667 g, $4.97 \mathrm{mmol}, 47 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $0.36(\mathrm{~s}, 9 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.0,20.0,22.6,130.9,132.4,136.0,137.6,138.9$, 140.6, 141.6, 144.9, 146.6, 154.0 ppm. Elemental analysis: calculated C 53.73, H 5.71, N 8.35 ; measured C 54.03, H 5.97, N 8.15.

To compound 5 ($218 \mathrm{mg}, 0.65 \mathrm{mmol}$) in $2.5 \mathrm{~mL} m$-xylene, 2-stannylpyrazine (6$)^{4}(200 \mu \mathrm{~L}, 0.63$ $\mathrm{mmol})$ was added. After 1 hour of bubbling N_{2} through the solution, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(37 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added, and the mixture was deoxygenated for another 15 min . After refluxing for 66 hours under N_{2}, the solvent was evaporated and the mixture was purified by column chromatography $\left(\mathrm{SiO}_{2}, 1^{\text {st }}\right.$ column with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 3 \% \mathrm{MeOH}, 2^{\text {nd }}$ column with $\mathrm{EtOAc}, \mathrm{R}_{f}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}=0.3$) to yield 168 mg of a white solid $\left(5 \cdot 10^{-4} \mathrm{~mol}, 77 \%\right)$. Purification by recrystallization from hot EtOAc yielded a pure sample of 7 for the analytical measurements. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.37(\mathrm{~s}, 9 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.50$ $(\mathrm{s}, 3 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 8.66-8.69(\mathrm{~m}, 2 \mathrm{H}), 8.81(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.64(\mathrm{dd}, J=5.4,1.5$ $\mathrm{Hz}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.00,20.1,22.6,131.1,132.5,137.1,137.6,140.5,141.6$,
$142.6,143.6,144.03,144.04,145.2,146.8,149.7,155.9 \mathrm{ppm}$. Elemental analysis: calculated (+0.09 EtOAc) C 67.90, H 6.69, N 16.36; measured C 67.81, H 6.47, N 16.63.

Compound $7\left(100 \mathrm{mg}, 3 \cdot 10^{-4} \mathrm{~mol}\right)$ was suspended with $\mathrm{NaOAc}\left(50 \mathrm{mg}, 6.1 \cdot 10^{-4} \mathrm{~mol}\right)$ in 3 mL dry THF under $\mathrm{N}_{2} . \mathrm{Br}_{2}\left(61 \mu \mathrm{~L}, 1.2 \cdot 10^{-3} \mathrm{~mol}\right)$ was added slowly at $0^{\circ} \mathrm{C}$. Then the ice-bath was removed and the orange mixture is allowed to warm up to room temperature during 2.5 hours in the dark. NEt_{3} (340 $\left.\mu \mathrm{L}, 2.4 \cdot 10^{-3} \mathrm{~mol}\right)$ was then added and this gave a white mixture. Saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ was added subsequently, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over anhydrous MgSO_{4} and evaporated. Purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / 4 \%\right.$ $\left.\mathrm{MeOH}, \mathrm{R}_{f}=0.5\right)$ followed by a recrystallization from hot $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded a white solid (53 mg , $1.5 \cdot 10^{-4} \mathrm{~mol}, 52 \%$). Product 8 can also be purified by washing the crude product with acetone. ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 8.67-8.70(\mathrm{~m}, 2 \mathrm{H})$, $8.77(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.64(\mathrm{dd}, J=4.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.7,22.3$, $126.2,131.9,134.8,135.6,135.8,142.4,142.8,143.4,143.7,143.9,144.3,145.1,146.9,154.8 \mathrm{ppm}$.

Compound $8\left(84 \mathrm{mg}, 2.5 \cdot 10^{-4} \mathrm{~mol}\right)$ in 20 mL toluene, phenol-2-boronic acid (9) (45 $\left.\mathrm{mg}, 3.3 \cdot 10^{-4} \mathrm{~mol}\right)$ in 2.5 mL EtOH , and $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(94 \mathrm{mg}, 9 \cdot 10^{-4} \mathrm{~mol}\right)$ in $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were mixed together and deoxygenated by bubbling N_{2} through the solution for $45 \mathrm{~min} . \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(14 \mathrm{mg}, 1.2 \cdot 10^{-5} \mathrm{~mol}\right)$ was then added and the mixture was purged again with N_{2} during 30 min before heating to reflux under N_{2} for 3.5 days. After cooling to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added, and the organic phase was separated. The aqueous phase is extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic phases were dried over MgSO_{4} and evaporated. Purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}, \mathrm{R}_{f}=0.8\right)$ and solubilization in hot $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by slow
evaporation of the solvent yielded yellow crystals of ligand $11\left(40 \mathrm{mg}, 1.1 \cdot 10^{-4} \mathrm{~mol}, 46 \%\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 6.98-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.67-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 9.66(\mathrm{dd}, J=13.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.3,19.9,115.5,120.5$, $127.1,129.3,130.1,132.1,133.3,134.4,135.4,136.4,137.4,142.4,143.4,143.8,143.9,145.0,146.9$, $149.4,152.6,155.3 \mathrm{ppm}$. Elemental analysis: calculated (+0.1 EtOAc) C $74.07, \mathrm{H} 5.22, \mathrm{~N} 15.43$; measured C 74.02, H 5.21, N 15.45 .

$\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\left(155 \mathrm{mg}, 7.5 \cdot 10^{-4} \mathrm{~mol}\right)$ and 2,2'-bipyrazine ($254 \mathrm{mg}, 1.6 \cdot 10^{-3} \mathrm{~mol}$) were suspended in 20 mL dry DMF and deoxygenated by bubbling N_{2} through the solution for 5 min . The mixture was heated to $150{ }^{\circ} \mathrm{C}$ for 16 hours under N_{2}. At room temperature, $200 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ were added and the purple precipitate were filtrated and washed with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ to yield the desired precursor complex $\left(277 \mathrm{mg}, 5.7 \cdot 10^{-4} \mathrm{~mol}, 76 \%\right)$. The product was used without further purification.

Ligand $11\left(71 \mathrm{mg}, 2 \cdot 10^{-4} \mathrm{~mol}\right)$ and the $\left[\mathrm{Ru}(\mathrm{bpz})_{2} \mathrm{Cl}_{2}\right]$ precursor $\left(101 \mathrm{mg}, 2.1 \cdot 10^{-4} \mathrm{~mol}\right)$ were suspended in 6 mL ethylene glycol. The mixture was heated to $135{ }^{\circ} \mathrm{C}$ for 15 hours under N_{2}. After cooling to room temperature, 20 mL of a saturated aqueous KPF_{6} solution was added and the orange precipitate was filtrated. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, acetone to acetone $/ \mathrm{H}_{2} \mathrm{O} 100 / 10$, to acetone $/ \mathrm{H}_{2} \mathrm{O} /$ sat. aq. $\mathrm{KNO}_{3} 100 / 10 / 1$) followed by precipitation of the $\mathrm{PF}_{6}{ }^{-}$salt by adding a sat. aq. KPF_{6} solution to the aqueous chromatography fractions (organic solvent component removed) afforded the complex ($110 \mathrm{mg}, 1 \cdot 10^{-4} \mathrm{~mol}, 52 \%$) as an orange powder. ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$,

Acetonitrile $\left.-d_{3}\right): \delta 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 6.86-7.03(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{ddd}, J=$ $8.0,7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.98(\mathrm{~m}, 5 \mathrm{H}), 8.03(\mathrm{dd}, J=3.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.61-8.75(\mathrm{~m}$, 5 H), $9.75-9.89(\mathrm{~m}, 6 \mathrm{H})$ ppm. HRMS (ESI): $[\mathrm{M}]^{2+} 386.0856$ (calcd 386.0849). Elemental analysis: calculated $\left(+\mathrm{KPF}_{6},+2 / 3 \mathrm{KNO}_{3}\right) \mathrm{C} 34.76, \mathrm{H} 2.30, \mathrm{~N} 13.51$; measured C 34.89 , H 2.71, N 13.12.

To a suspension of $\mathrm{NaH}\left(207 \mathrm{mg}, 5.2 \cdot 10^{-3} \mathrm{~mol}\right)$ in 10 mL dry THF, 3-bromo-4-hydroxybenzonitrile (1 $\left.\mathrm{g}, 5.1 \cdot 10^{-3} \mathrm{~mol}\right)$ in 6 mL dry THF was added slowly at $0^{\circ} \mathrm{C}$ under N_{2}. After $15 \mathrm{~min} \mathrm{MOMCl}(460 \mu \mathrm{~L}$, $6.1 \cdot 10^{-3} \mathrm{~mol}$) was added dropwise. The mixture was stirred for 45 min at $0^{\circ} \mathrm{C}$ and then for 2 hours at room temperature. After pouring the beige reaction mixture onto 50 g of ice, the suspension was extracted with 50 mL EtOAc. The organic phase was washed with brine $(100 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ and dried over anhydrous MgSO_{4} to afford the pure protected phenol as a beige crystalline powder $\left(1.217 \mathrm{~g}, 5 \cdot 10^{-3} \mathrm{~mol}, 100 \%\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.54(\mathrm{~s}, 3 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 56.7,94.9,106.4,113.1,115.5,117.6,132.8,136.9,157.4 \mathrm{ppm}$.

$n-\operatorname{BuLi}\left(870 \mu \mathrm{~L}, 2.2 \cdot 10^{-3} \mathrm{~mol}, 2.5 \mathrm{M}\right.$ in hexane $)$ was added dropwise to a solution of the protected phenol (499 mg, 2.1•10 3 mol) in 12 mL dry THF at $-78^{\circ} \mathrm{C}$ under N_{2}. After 2 hours, trimethylborate $\left(260 \mu \mathrm{~L}, 2.3 \cdot 10^{-3} \mathrm{~mol}\right)$ was added and the mixture was allowed to warm up to room temperature EtOAc (50 mL) and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added and the organic phase was separated. The aqueous phase was extracted twice with EtOAc $(2 \times 50 \mathrm{~mL})$, and the combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ and brine $(2 \times 50 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The yellow oil was triturated with 30 mL of a EtOAc/cyclohexane $1 / 6$ mixture to afford the boronic acid $\mathbf{1 0}(146 \mathrm{mg}$, $\left.7 \cdot 10^{-4} \mathrm{~mol}, 34 \%\right)$ as a yellow powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.52(\mathrm{~s}, 3 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 5.72$ $(\mathrm{s}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

Compound $\mathbf{8}\left(131 \mathrm{mg}, 3.8 \cdot 10^{-4} \mathrm{~mol}\right)$ in 30 mL toluene, the protected p-cyanophenol boronic acid $\mathbf{1 0}$ $\left(88 \mathrm{mg}, 4.3 \cdot 10^{-4} \mathrm{~mol}\right)$ in 4 mL EtOH , and $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(129 \mathrm{mg}, 1.2 \cdot 10^{-3} \mathrm{~mol}\right)$ in $1 \mathrm{~mL} \mathrm{H}{ }_{2} \mathrm{O}$ were mixed together and deoxygenated by bubbling N_{2} through the solution during $15 \mathrm{~min} . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(49 \mathrm{mg}$, $4.2 \cdot 10^{-5} \mathrm{~mol}$) was then added, and the mixture was bubbled with N_{2} for another 10 min prior to heating to reflux under N_{2} for 18 h . After cooling to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added, and the organic phase was separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL) and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}, \mathrm{R}_{f}=0.7\right)$ yielded a pale yellow solid (123 mg , $\left.2.9 \cdot 10^{-4} \mathrm{~mol}, 76 \%\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 5.18(\mathrm{~s}$, $2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.6,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.67-8.70(\mathrm{~m}, 2 \mathrm{H}), 8.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.66(\mathrm{dd}, J=9.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.4,20.0,56.5,94.5,105.2,114.9,118.9,131.3,132.2,132.6,133.4,133.7$, $134.6,134.7,136.1,137.7,142.4,143.5,143.9,143.9,145.1,146.8,149.5,155.4,157.9 \mathrm{ppm}$.

A 4 M solution of HCl in dioxane (3 mL) was added to a solution of the protected ligand (60 mg , $1.4 \cdot 10^{-3} \mathrm{~mol}$) in 3 mL dioxane, and the yellow solution was stirred overnight. After neutralization with a saturated aqueous NaHCO_{3} solution (25 mL), the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$ and dried over anhydrous MgSO_{4}. Purification by column chromatography (SiO_{2}, EtOAc/Cyclohexane, $1 / 1, \mathrm{R}_{f}=0.3$) yielded ligand $\mathbf{1 2}$ as a pale yellow solid ($51 \mathrm{mg}, 1.3 \cdot 10^{-4} \mathrm{~mol}, 95$ \%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.66-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.84(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 9.58(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.67(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.2$, 19.9, 104.2, 116.8, 119.0, 128.5, 132.4, 133.1, 133.7, 134.4, 134.8, 135.00, 135.2, 137.4, 142.5, 143.3, 143.7, 143.9, 145.0, 147.1, 149.4, 154.9, 156.7 ppm. Elemental analysis: calculated (+ $0.2 \mathrm{EtOAc}+$ 0.2 cyclohexane) C 72.55, H 5.11, N 16.92 measured; C 72.55, H 5.27, N 17.04.

Ligand $12\left(85 \mathrm{mg}, 2.2 \cdot 10^{-4} \mathrm{~mol}\right)$ and the $\left[\mathrm{Ru}(\mathrm{bpz})_{2} \mathrm{Cl}_{2}\right]$ precursor $\left(110 \mathrm{mg}, 2.3 \cdot 10^{-4} \mathrm{~mol}\right)$ were suspended in 8 mL ethylene glycol. The mixture was heated to $135^{\circ} \mathrm{C}$ under N_{2} for 15 hours. After cooling to room temperature, saturated aqueous KPF_{6} solution was added and the red precipitate was filtrated. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, acetone to acetone $/ \mathrm{H}_{2} \mathrm{O} 100 / 10$, to acetone, $\mathrm{H}_{2} \mathrm{O} /$ sat. aq. $\mathrm{KNO}_{3} 100 / 10 / 1$) followed by precipitation of the $\mathrm{PF}_{6}{ }^{-}$salt by adding sat. aq. KPF_{6} solution to the aqueous residues of the chromatography fractions (organic solvent components removed) afforded the $\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$ dyad ($118 \mathrm{mg}, 1.1 \cdot 10^{-4} \mathrm{~mol}, 48 \%$) as a red powder. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}): $\delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 7.11-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.47$ (d, $J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (dd, $J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36-8.50(\mathrm{~m}, 5 \mathrm{H}), 8.58(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{dt}, J$ $=12.8,3.6 \mathrm{~Hz}, 5 \mathrm{H}), 10.18$ (dd, $J=11.3,8.2 \mathrm{~Hz}, 5 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} . \operatorname{HRMS}(\mathrm{ESI}):[\mathrm{M}]^{2+}$ 398.5826 (calcd 398.5825).

Elemental analysis: calculated ($+2 \mathrm{H}_{2} \mathrm{O}$) C 41.72 , H 2.96 , N 16.22 ; measured C 41.52 , H $3.11, \mathrm{~N}$ 16.17.

Synthesis of 2,2'-bipyrazine

This synthesis followed a previously published protocol. ${ }^{4}$ To a solution of diisopropylamine (1.9 mL , $13.5 \cdot 10^{-3} \mathrm{~mol}$) in dry THF (50 mL), n-BuLi (1.6 M in hexane, $8.5 \mathrm{~mL}, 13.5 \cdot 10^{-3} \mathrm{~mol}$) was added dropwise at $0^{\circ} \mathrm{C}$ under N_{2}. After 10 min , still at $0^{\circ} \mathrm{C}, \mathrm{SnBu}_{3} \mathrm{H}\left(3.8 \mathrm{~mL}, 14.1 \cdot 10^{-3} \mathrm{~mol}\right)$ was added, and the mixture was stirred for 10 min . 2-chloropyrazine $\left(1.5 \mathrm{~g}, 1.31 \cdot 10^{-2} \mathrm{~mol}\right)$ in 10 mL dry THF was added at $-78{ }^{\circ} \mathrm{C}$ and this mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ under N_{2} for 8 hours. The reaction was quenched at $-40^{\circ} \mathrm{C}$ by addition of a saturated aqueous KF solution (50 mL). The flask was stored in the fridge overnight. $30 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were then added, and the organic and aqueous phases were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous MgSO_{4}. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc, 9/1, $\mathrm{R}_{f}=0.5$) afforded 2-tributylstannylpyrazine as a colorless oil ($1.47 \mathrm{~g}, 4 \cdot 10^{-3} \mathrm{~mol}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}$), $1.04-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.28-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.62$ $(\mathrm{m}, 6 \mathrm{H}), 8.29-8.41(\mathrm{~m}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=2.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.9,13.6,27.3,29.0,142.9,146.7,151.2,169.9 \mathrm{ppm}$.

A solution of 2-chloropyrazine ($57 \mu \mathrm{~L}, 6.4 \cdot 10^{-4} \mathrm{~mol}$) and 2-tributylstannylpyrazine ($200 \mu \mathrm{~L}, 6.3 \cdot 10^{-4}$ mol) in $2.5 \mathrm{~mL} m$-xylene was deoxygenated by bubbling with N_{2} for $40 \mathrm{~min} . \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(39 \mathrm{mg}$, $3.4 \cdot 10^{-5} \mathrm{~mol}$) was added and the mixture was bubbled with N_{2} for 15 min . After 3 days at reflux under N_{2}, the solvent of the black reaction mixture was evaporated, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}, \mathrm{R}_{f}=0.5\right) .2,2^{\prime}$-bipyrazine was obtained as a white solid in 100% yield $\left(100 \mathrm{mg}, 6.3 \cdot 10^{-4} \mathrm{~mol}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.63(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5,143.8,145.2,149.4 \mathrm{ppm}$.

Experimental methods / apparatus

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on 300 MHz and 400 MHz Bruker Avance spectrometers. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were referenced relative to SiMe_{4} by using the solvent signals as internal standards. High-resolution mass spectrometry was performed on a Bruker maXis 4G QTOF ESI mass spectrometer. Elemental analysis was conducted by Ms. Sylvie Mittelheisser at the Department of Chemistry, University of Basel on a Vario Micro Cube instrument from Elementar and by the Analytical Laboratory at the Institute for Inorganic Chemistry at the University of Göttingen using a Vario III CHNS analyzer from Elementar. X-ray diffraction measurement on the single crystal of ligand 11 (Figure 1) was performed on a Bruker APEX II diffractometer, equipped with a graphite monochromator centered on the path of $\mathrm{Mo} \mathrm{K} \alpha$ radiation, by Dr. Pierre Dechambenoit at Université de Bordeaux, Centre de Recherche Paul Pascal. A single crystal was coated with Paratone N oil and mounted on a fiber loop, followed by data collection at 120 K . The program SAINT was used to integrate the data, which was thereafter corrected using SADABS. ${ }^{9}$ The structure was solved with SHELXS-97 and refined by a full-matrix least-squares method on F^{2} using SHELXL-97. ${ }^{10}$ All nonhydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed at calculated positions using suitable riding models. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97. Further details about the crystal structure refinement can be found in the CIF file (CCDC 951403). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. UV-Vis absorption was measured on a Shimadzu UV-1800 spectrophotometer. Steady-state luminescence was recorded using a Fluorolog 3 instrument from Horiba Jobin-Yvon. Time-resolved luminescence and transient absorption spectroscopy was performed using an LP920-KS instrument from Edinburgh Instruments with the frequency-doubled (or frequency-triplet) output from a Quantel Brilliant blaser as an excitation source. The duration of the excitation pulses was approximately 10 ns . Transient absorption spectra were generally recorded by time-averaging over a detection period of 200 ns. Detection either occurred immediately after pulsed excitation or with suitable delay times as indicated in the text and figure captions. The excitation wavelength was 532 nm unless otherwise indicated.

Quartz cuvettes from Starna and spectrophotometric (or HPLC) grade solvent was used for all optical spectroscopic experiments.
When referring to $\mathrm{CH}_{3} \mathrm{CN} /$ water mixtures in the text of the manuscript, this designates $4: 1$ ($\mathrm{v}: \mathrm{v}$) mixtures in the case of the $\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$ dyad and $1: 1(\mathrm{v}: \mathrm{v})$ mixtures in the case of the $\mathrm{PhOH}-\mathrm{Ru}^{2+}$ dyad, respectively. For H/D kinetic isotope effect studies, the aqueous solvent component was heavy water $\left(\mathrm{D}_{2} \mathrm{O}\right)$; this leads to rapid exchange of the phenolic protons by deuterons. ${ }^{5}$
All optical spectroscopic measurements were performed in aerated solutions.

Additional optical spectroscopic data

Figure S1. (a) Steady-state luminescence recorded from $\sim 10^{-5} \mathrm{M}$ (aerated) acetonitrile solutions of $\mathrm{Ru}(\mathrm{bpz})_{3}{ }^{2+}, \mathrm{PhOH}-\mathrm{Ru}^{2+}$, and $\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$. The spectra are corrected for differences in absorbance at the excitation wavelength. The spectrum of $\mathrm{Ru}(\mathrm{bpz})_{3}{ }^{2+}$ has been normalized to a maximum intensity of 1.0 , the spectra of the two dyads have been scaled properly. (In one set of experiments, excitation occurred at 444 nm for $\mathrm{PhOH}-\mathrm{Ru}^{2+}$ and $\mathrm{Ru}(\mathrm{bpz})_{3}{ }^{2+}$; in a second set of experiments, excitation occurred at 495 nm for $\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$ and $\mathrm{Ru}(\mathrm{bpz})_{3}{ }^{2+}$). (b) Decays of the luminescence from the same three samples following excitation at 532 nm with pulses of $\sim 10 \mathrm{~ns}$ duration. The detection wavelength was 600 nm for $\mathrm{PhOH}-\mathrm{Ru}^{2+}$ whereas for $\mathrm{Ru}(\mathrm{bpz}){ }_{3}{ }^{2+}$ and $\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$ detection occurred at 610 nm .

Figure S2. Transient absorption spectra obtained from $\sim 10^{-5} \mathrm{M}$ acetonitrile solutions of (a)
$\mathrm{Ru}(\mathrm{bpz})_{3}{ }^{2+}$, (b) $\mathrm{PhOH}-\mathrm{Ru}^{2+}$, and (c) $\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$. Excitation occurred at 532 nm with pulses of
$\sim 10 \mathrm{~ns}$ in all three cases. The spectra were recorded by time-averaging the transient absorption signals over a 200 ns time period starting immediately after the laser pulses.

Figure S3. Normalized luminescence decays recorded after pulsed excitation of aerated $\sim 10^{-5} \mathrm{M}$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ solutions of $\mathrm{Ru}(\mathrm{bpz})_{3}{ }^{2+}, \mathrm{PhOH}-\mathrm{Ru}^{2+}$, and $\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$. The excitation wavelength was 532 nm . The duration of the pulses was $\sim 10 \mathrm{~ns}$. The detection wavelength was 600 nm for $\mathrm{Ru}(\mathrm{bpz})_{3}{ }^{2+}$ and $\mathrm{PhOH}-\mathrm{Ru}^{2+}$ and 610 nm for $\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$. $\mathrm{The}_{\mathrm{CH}}^{3} \mathbf{C N} / \mathrm{H}_{2} \mathrm{O}$ solutions were 1:1 $(\mathrm{v}: \mathrm{v})$ in the case of $\mathrm{Ru}(\mathrm{bpz})_{3}{ }^{2+}$ and $\mathrm{PhOH}-\mathrm{Ru}^{2+}$, and 4:1 (v:v) in the case of $\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$. The decays were arbitrarily normalized to a value of 1.0 at $t=0$.

${ }^{1}$ H NMR spectra of new key compounds

Compound 2

The signal at 5.30 ppm is due to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Compound $\mathbf{3}$

The unlabeled signal at 5.30 ppm is due to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Compound 5

The unlabeled signals at 5.30 ppm and 0.08 ppm are attributed to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and grease, respectively.

Compound 7

The unlabeled signal at 5.29 ppm is attributed to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Compound $\mathbf{8}$

The unlabeled signal at 5.30 ppm is due to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Compound 10

The unlabeled signal at 1.43 ppm is due to cyclohexane.

Ligand 11

The unlabeled signals at $1.25 \mathrm{ppm}, 2.05 \mathrm{ppm}, 4.11 \mathrm{pm}$ are due to ethyl acetate. The unlabeled signals at 0.07 ppm and 4.94 ppm are attributed to grease and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, respectively.

Ligand $\mathbf{1 2}$ before MOM-deprotection

The unlabeled signals at $1.25 \mathrm{ppm}, 2.05 \mathrm{ppm}, 4.11 \mathrm{pm}$ are due to ethyl acetate. The unlabeled signal at 0.01 is attributed to grease.

Ligand 12

The unlabeled signals at $1.25 \mathrm{ppm}, 2.05 \mathrm{ppm}, 4.11 \mathrm{ppm}$ are due to ethyl acetate. The unlabeled signal at 0.01 ppm is attributed to grease. The unlabeled signal at 5.32 ppm is due to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The unlabeled signal at 1.42 ppm is assigned to cyclohexane.
$\mathrm{PhOH}-\mathrm{Ru}^{2+}$

The unlabeled signal at 2.17 ppm is attributed to acetone.

Zoom in the aromatic region of $\mathrm{PhOH}-\mathrm{Ru}^{2+}$

$\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2014

Zoom in the aromatic region of $\mathrm{CN}-\mathrm{PhOH}-\mathrm{Ru}^{2+}$

$\begin{aligned} & 6 T \angle Z \\ & \angle T \angle J \\ & 6 I \angle L \end{aligned}$
$88^{\prime} /$
$\begin{gathered} \angle \forall L \\ \angle \forall L \\ \angle, ~ \end{gathered}$
69' 4 -
69.4

$69 L^{\prime}$

$\left.\begin{array}{l}\text { 9T'OL } \\ \text { LT'OI } \\ \text { 81'0I } \\ \text { LZ'OI } \\ \text { LZ'OL }\end{array}\right]$

References

(1) Debie, D. A.; Ostrowicz, A.; Geurtsen, G.; Vanderplas, H. C., Tetrahedron 1988, 44, 2977.
(2) Dales, N.; Zhang, Z. US Patent, WO 2008/0245390 A2. 2008.
(3) Hanss, D.; Wenger, O. S., Inorg. Chem. 2009, 48, 671.
(4) Darabantu, M.; Boully, L.; Turck, A.; Ple, N., Tetrahedron 2005, 61, 2897.
(5) Kuss-Petermann, M.; Wolf, H.; Stalke, D.; Wenger, O. S., J. Am. Chem. Soc. 2012, 134, 12844.
(6) APEX2 Software Suite; Bruker AXS, Madison, WI, 2009.
(7) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112.

