Electronic Supplementary Informations

Combining 3-D Plasmonic Gold Nanorod Arrays with Colloidal Nanoparticles as a Versatile Concept for Reliable, Sensitive, and Selective Molecular Detection by SERS

Mehmet Yilmaz^{1,2}, Erhan Senlik^{1,2}, Erhan Biskin^{2,3}, Mustafa Selman Yavuz⁴, Ugur Tamer⁵, Gokhan Demirel^{1,3}*

¹Bio-inspired Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, 06500 Ankara, TURKEY

²Department of Chemical Engineering, Bioengineering Division, Hacettepe University, 06800 Ankara, TURKEY

³Biyomedtek: Center for Bioengineering, 06800 Ankara, TURKEY

⁴Department of Metallurgy and Materials Engineering, Selcuk University, 42075 Konya, TURKEY

⁵Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, TURKEY

Figure S1. UV/Vis spectra of as-prepared colloidal gold nanoparticles: Gold nanospheres (AuNP) (a), Gold nanorods (AuNR) (b), and Gold nanocages (AuNC) (c). TEM images of synthesized colloidal gold nanoparticles: (a) AuNPs, (b) AuNRs, and (c) AuNCs.

Figure S2. SEM images of colloidal gold nanoparticle decorated gold nanorod arrays: (a) nanospheres (AuNPs), (b) nanorods, and (c) nanocages on gold nanorod arrays (α =10°).

Solid MB powder (cm ⁻¹) ¹	10 μM of MB on GNA and 20 ppm AuNR (cm- ¹)	Reported results (cm ⁻¹) ²	Band assignments ^{1, 2b}
1618 (s)	1618 (s)	1617 (s)	v(C–C) ring
		1597 (w)	() 3
1544 (w)	1575 (w)	1513 (w)	$V_{asym}(C-C)$
1441 (w)	1436 (w)	1442 (m)	v _{asym} (C–N)
1396 (m)	1395 (m)	1396 (m)	v _{sym} (C–N)
1331 (w)	1315 (w)		· · · ·
1272 (w)	1290 (w)	1301 (m)	
1181 (m)	1177 (w)	1184 (m)	<i>v</i> (C–N)
	1149 (w)	1121 (m)	γ(C-H)
1067 (w)	1038 (w)	1030 (m)	β(C-H)
	882 (w)		
768 (w)	770 (m)		
677 (w)	667 (w)	670 (w)	γ(C-H)
	590 (w)	612 (m)	δ(C-S-C)
497 (w)	500 (m)	502 (m)	δ(C-N-C)
445 (s)	449 (s)	449 (m)	δ(C-N-C)

Table S1. The Raman shifts, relative intensities and peak assignments for MB.

Abbreviations: GNA: Gold nanorod arrays fabricated at 10° of deposition angle; AuNR: colloidal gold nanorods; s, strong; m, medium; w, weak; v, stretching; α , in-plane ring deformation; β , in-plane bending; γ , out-of-plane bending; and δ , skeletal deformation.

Table S2. The Raman shifts, relative intensities and peak assignments for DIP.

Solid DIP powders ³ (cm ⁻¹)	5 ppm of DIP on GNA and 20 ppm AuNR	Reported results ³ (cm ⁻¹)	Band assignments ³
	(cm-')		
1569 (m)	1572 (m)	1576 (m)	v(C–C) ring
	1518 (m)		V _{asvm} (C–C)
1437 (m)	1445 (m)	1443 (w)	v(C-C) ring
1317 (m)	1370 (s)	1326 (m)	<i>v</i> (C–O)
1289 (m)	1298 (m)	1271 (m)	β(C-H)
1146 (m)	1156 (s)	1150 (m)	
1080 (w)	1073 (w)	1060-1095 (m)	Trigonal ring breathing
987 (s)	998 (w)	996 (s)	Symmetric ring breathing
933 (w)	953 (m)	938 (m)	γ(C-H)
885 (m)	880 (w)	891 (m)	
844 (m)	817 (m)		β(C-CO2)
748 (m)	739 (w)		δ(Ο-C-Ο)
639 (m)	655 (w)		γ(C-H)
	Solid DIP powders ³ (cm ⁻¹) 1569 (m) 1437 (m) 1317 (m) 1289 (m) 1146 (m) 1080 (w) 987 (s) 933 (w) 885 (m) 844 (m) 748 (m) 639 (m)	Solid DIP powders3 (cm-1)5 ppm of DIP on GNA and 20 ppm AuNR (cm-1)1569 (m) $1572 (m)$ 1518 (m)1437 (m) $1445 (m)$ 1317 (m) $1370 (s)$ 1289 (m) $1298 (m)$ 1146 (m) $1156 (s)$ 1080 (w) $1073 (w)$ 987 (s) $998 (w)$ 933 (w) $953 (m)$ 885 (m) $880 (w)$ 844 (m) $739 (w)$ 639 (m) $655 (w)$	$\begin{array}{c} {\rm Solid DIP powders}^3 \\ {\rm (cm}^{-1}) \\ \end{array} \begin{array}{c} 5 {\rm ppm of DIP on GNA} \\ {\rm and 20 ppm AuNR} \\ {\rm (cm}^{-1}) \\ \end{array} \begin{array}{c} {\rm (cm}^{-1}) \\ \end{array} \\ \end{array} \begin{array}{c} {\rm (cm}^{-1}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} {\rm (cm}^{-1}) \\ \end{array} \\ \end{array} \\ \begin{array}{c} {\rm 1569 (m)} \\ 1576 (m) \\ 1576 (m) \\ 1518 (m) \\ \end{array} \\ \end{array} \\ \begin{array}{c} {\rm 1437 (m)} \\ 1437 (m) \\ 1317 (m) \\ 1317 (m) \\ 1289 (m) \\ 1289 (m) \\ 1289 (m) \\ 1298 (m) \\ 1298 (m) \\ 1298 (m) \\ 1271 (m) \\ 1146 (m) \\ 1156 (s) \\ 1150 (m) \\ 1080 (w) \\ 987 (s) \\ 933 (w) \\ 998 (m) \\ 885 (m) \\ 885 (m) \\ 885 (m) \\ 880 (w) \\ 8817 (m) \\ 748 (m) \\ 748 (m) \\ 739 (w) \\ 639 (m) \\ \end{array} \\ \begin{array}{c} {\rm 5ppm of DIP on GNA \\ {\rm (cm}^{-1}) \\ \end{array} \\ $

Abbreviations: GNA: Gold nanorod arrays fabricated at 10° of deposition angle; AuNR: colloidal gold nanorods; s, strong; m, medium; w, weak; ν , stretching; β , in-plane bending; γ , out-of-plane bending; and δ , skeletal deformation.

Solid MP powders ⁴ (cm ⁻¹)	5 ppm of MP on GNA and 20 ppm AuNR (cm- ¹)	Reported results ⁴⁻⁵ (cm ⁻¹)	Band assignments ⁴⁻⁵
1596 (w)	1587 (w)	1598 (m)	v(C–C) ring
1373 (s)	1342 (s)	1376 (s)	<i>v</i> (N–O)
1216 (m)	1222 (w)	1246 (m)	v(C–O) ring
1107 (m)	1158 (m)	1132 (m)	<i>v</i> (C–N)
1039 (m)	1028 (w)	1003 (m)	<i>v</i> (CH ₃ –O)
857 (w)	853 (w)	851 (w)	<i>v</i> (N–O)

Table S3. The Raman shifts, relative intensities and peak assignments for MP.

Abbreviations: GNA: Gold nanorod arrays fabricated at 10° of deposition angle; AuNR: colloidal gold nanorods; s, strong; m, medium; w, weak; *v*, stretching;

Table S4. The Raman shifts, relative intensities and peak assignments for DP.

5 ppm of DP on GNA and 20 ppm AuNR (cm- ¹)	Reported results ⁶ (cm ⁻¹)	Band assignments	
1584 (m)			
1446 (w)		δ(CH2)	
1372 (m)		<i>v</i> (C–O)	
1279 (m)		β(C-H)	
1148 (s)	1149 (s)	γ(C-H)	
1056 (w)	1050 (w)	β(C-H)	
952 (m)	950 (s)	γ(C-H)	
736 (w)	720 (m)	<i>v</i> (P–O)	
643 (w)		γ(C-H)	

Abbreviations: GNA: Gold nanorod arrays fabricated at 10° of deposition angle; AuNR: colloidal gold nanorods; s, strong; m, medium; w, weak; *v*, stretching; β , in-plane bending; γ , out-of-plane bending.

References

1. Xiao, G.-N.; Man, S.-Q., Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. *Chem Phys Lett* **2007**, *447* (4), 305-309.

2. (a) Naujok, R. R.; Duevel, R. V.; Corn, R. M., Fluorescence and Fourier Transform surface-enhanced Raman scattering measurements of methylene blue adsorbed onto a sulfur-modified gold electrode. *Langmuir* **1993**, *9* (7), 1771-1774; (b) Ruan, C.; Wang, W.; Gu, B., Single-molecule detection of thionine on aggregated gold nanoparticles by surface enhanced Raman scattering. *J Raman Spectrosc* **2007**, *38* (5), 568-573.

3. Kolomenskii, A.; Schuessler, H., Raman spectra of dipicolinic acid in crystalline and liquid environments. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* **2005**, *61* (4), 647-651.

4. Wang, J.; Kong, L. T.; Guo, Z.; Xu, J. Y.; Liu, J. H., Synthesis of novel decorated onedimensional gold nanoparticle and its application in ultrasensitive detection of insecticide. *J Mater Chem* **2010**, *20* (25), 5271-5279.

5. Alak, A. M.; Vo-Dinh, T., Surface-enhanced Raman spectrometry of organo phosphorus chemical agents. *Anal Chem* **1987**, 59 (17), 2149-2153.

6. Yan, F.; Wabuyele, M. B.; Griffin, G. D.; Vass, A. A.; Vo-Dinh, T., Surface-enhanced Raman scattering detection of chemical and biological agent simulants. *Sensors Journal, IEEE* **2005**, *5* (4), 665-670.