Supporting information for

Entropy and Enthalpy Contributions to the Kinetics of Proton Coupled Electron Transfer to the Mn₄O₄(O₂PPh₂)₆ Cubane

Thomas G. Carrell, Paul F. Smith, Joseph Dennes, and G. Charles Dismukes*

Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854

Department of Chemistry, Princeton University, Princeton NJ 08540

Experimental

Materials. $Mn_4O_4(O_2PPh_2)_6$ (1) was prepared as described elsewhere¹. All other materials were of analytical purity from commercial sources and were used as received. Monodeuterated phenols were prepared by exchange using CD₃OD in approximately 500-fold excess in CH₂Cl₂ solution².

Kinetic Measurements. The reactions of phenols with **1** were monitored by UV-Vis spectrophotometry on an HP-8452A spectrophotometer in CH_2CI_2 solution. Constant temperature was maintained using a Neslab Endocal RTE-5DD circulating water bath. All measurements were made at 25.0 \pm 0.1°C unless otherwise stated. The change in the absorbance at 342 nm was monitored. This wavelength reflects the change in concentration of **1** and is located in the center of a region of the spectrum that bleaches upon reaction of phenols with **1**.

Data analysis. All data points represent an average of five separate experimental trials. Initial rates were calculated directly from the initial slopes of the absorbance vs. time traces, yielding (-dA/dt). The pseudo-first order rate constant k_{obs} was determined by fitting the slope from a plot of ln(A_t - A_{∞}) vs. time:

 $ln(A_t-A_{\infty}) = -k_{obs}^{*}t + constant$

The second order rate constant is obtained by fitting the corresponding equation:

 $K_{obs} = k_2$ [phenol]

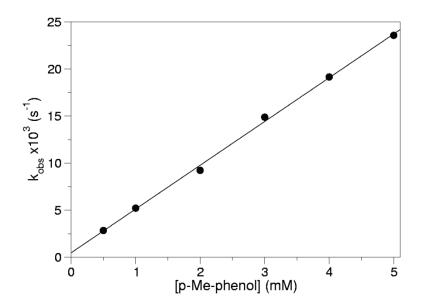


Figure S1: Pseudo-first order rate constant k_{obs} as a function of the concentration of *p*-Mephenol for the reaction between **1** and *p*-Me-phenol at 25.0°C. Conditions: [**1**] = 0.10 mM in CH₂Cl₂; [*p*-Me-phenol] = 0.50-5.0 mM.

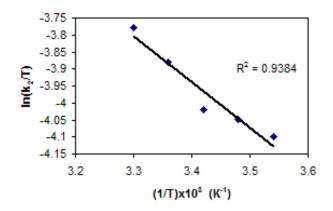


Figure S2: Temperature dependence of the reaction between **1** and *p*-Me-phenol. Conditions: $[1] = 0.10 \text{ mM} \text{ in } CH_2Cl_2$; [*p*-Me-phenol] = 3.0 mM.

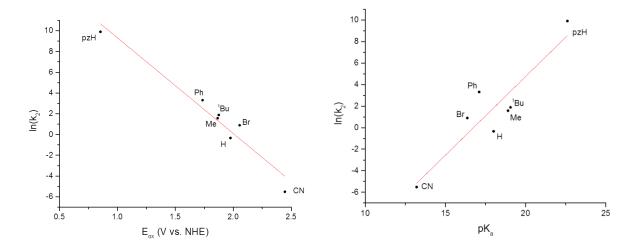


Figure S3: Dependence of the $ln(k_2)$ on the oxidation potential of the phenol and pK_a of the phenolic proton. Conditions: [1] = 0.10 mM in CH_2Cl_2 ; [*p*-X-phenol] = 3.0 mM.

Species	Mn ox. state	O-H BDE	Ref.
1H	Mn ₄ (3III,IV)	84-99	This work
$(Mn_2(L-X)_2(\mu-O)(\mu-OH))^{+a}$	Mn ₂ (III,IV)	76-79	3
$(Mn_2(\mu-O)(\mu-OH)(bpy)_4)^{3+b}$	Mn ₂ (2III)	84	3,4
$(Mn_2(\mu-O)(\mu-OH)(phen)_4)^{3+c}$	Mn ₂ (2III)	79	5
$(Mn_2(\mu-O)(\mu-OH)(bispicen)_2)^{3+d}$	Mn ₂ (2III)	76	6

Table S1. Comparison of µ-O-H BDE's for Mn complexes

a. L-X = 2-hydroxy-1,3-bis(3,5-X₂-salicylideneamino)propane (X= Cl, H or tBu)

b. Bpy= 2,2' bipyridine

c. Phen= 1,10-phenanthroline

d. Bispicen= N,N'-bis[2-methyl(pyridyl)ethane-1,2-diamine]

References

- 1. Carrell, T.G.; Cohen, S.; Dismukes, G.C. J. Molec. Catal. A: Chemical. 2002, 187, 3-15.
- 2. Biczók, L.; Gupta, N.; Linschitz, H. J. Am. Chem. Soc. 1997, 119, 12601-12609.
- 3. Baldwin, M.J.; Pecoraro, V.L. J. Am. Chem. Soc. 1996, 118, 11325-11326.
- 4. Thorp, H.H.; Sarneski, J.E.; Brudvig, G.W.; Crabtree, R.H. *J. Am. Chem. Soc.* **1989**, 111, 9249-9250.
- 5. Wang, K.; Mayer, J.M. J. Am. Chem. Soc. 1997, 119, 1470-1471.
- Singhal, G.S. et. al. "Concepts in photobiology: Photosynthesis and Photomorphogenesis". 1999, Narosa Publishing House, New Delhi India.