Reaction of Atomic Hydrogen with Formic Acid

Qian Cao,^a Slawomir Berski,^b Zdzislaw Latajka,^b Markku Räsänen^a and Leonid Khriachtchev^{*a}

^aDepartment of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland. Tel:

+358919150310; E-mail: leonid.khriachtchev@helsinki.fi.

^b Faculty of Chemistry, University of Wroclaw, 14, F. Joliot-Curie Str., 50-383 Wroclaw, Poland.

Supporting Information

	UCCS	SD(T)/aug-cc-p	TZ	UMP2/aug-cc-pVTZ				
	trans-H ₂ COOH							
0	0.642424	-1.161071	-0.442087	0.628612	-1.139207	-0.479227		
0	-0.568332	0.821912	-0.147551	-0.555987	0.851213	-0.150258		
C	0.506816	0.083415	0.195589	0.504880	0.085988	0.194461		
Н	0.429095	-0.026727	1.298197	0.411166	-0.047883	1.285197		
Н	-0.209726	-1.609314	-0.394611	-0.186265	-1.636426	-0.347492		
Н	1.431673	0.643366	-0.005566	1.429544	0.637896	0.001289		
	cis-H ₂ COOH							
0	0.596222	-1.219350	-0.370269	0.596183	-1.215859	-0.369153		
0	-0.562915	0.739782	-0.174626	-0.561171	0.735334	-0.175478		
C	0.518760	0.060865	0.222612	0.526240	0.062501	0.228402		
Н	0.477229	-0.007889	1.327891	0.473908	-0.006922	1.326285		
Н	1.389142	-1.658877	-0.044153	1.386666	-1.662157	-0.046663		
Н	1.404823	0.676870	-0.029634	1.401435	0.678503	-0.031572		
	cis-cis-HC(OH) ₂							
0	-0.104223	-0.277994	-0.171228	-0.105525	-0.275694	-0.167506		
C	0.011758	0.190317	1.110570	0.012188	0.191253	1.110635		
Н	0.868797	-0.177862	1.684958	0.866514	-0.176181	1.683347		

Table S1. Optimized geometrical structures (in Å, for geometries, see Figure 1)

0	-1.213048	0.081657	1.713750	-1.210179	0.082747	1.710290			
H	-1.128977	0.418402	2.611232	-1.127653	0.414970	2.609911			
н	0.756323	0 102470	0 502422	0 755269	0 106057	0.500817			
11	0.750525	-0.193470	-0.393432	0.755207	-0.190037	-0.390817			
			•						
	trans-cis-HC(OH) ₂								
0	-0.367634	-0.169133	-0.276201	0.103334	-0.128776	-0.163662			
C	0.248387	0 262465	1 033529	0.002258	0.177746	1 188906			
	-0.240307	0.202403	1.055527	-0.002238	-0.177740	1.100900			
Н	0.738608	0.196728	1.488733	0.903550	0.170924	1.675030			
			1.00000		0.0.00.47	1.622420			
0	-1.209720	-0.280663	1.830025	-1.197022	0.360247	1.625439			
H	-2 028946	-0.302838	1 319861	-1 297002	0 146319	2 559295			
	2.020910	0.502050	1.019001	1.277002					
Н	0.211100	0.373440	-0.821967	-0.767329	-0.329928	-0.529148			
				24					
			13	81					
0	_	-	-	-0.258742	-0.567366	-0.073026			
C	-	-	-	-0.179602	0.172767	1.074632			
Ц				0 780/38	0.140278	1 586746			
	-	-	_	0.780438	0.149278	1.300740			
0	-	-	-	-1.276505	-0.049582	1.859215			
H	-	-	-	-1.095085	0.307474	2.735709			
Н		_	_	_0 227231	0.028468	_0.827416			
				0.227231	0.020100	0.027410			
	TS2								
0	_	-	-	0.702922	-1.217024	-0.602230			
0	-	-	-	-0.649680	0.604956	-0.038778			

C	-	-	-	0.548632	-0.021606	0.014408
H	-	-	-	-0.170092	0.208249	1.023828
Н	-	-	-	-0.183970	-1.581450	-0.733645
Н	-	-	-	1.468397	0.557435	-0.001374

Table S2.Vibrational frequencies (in cm⁻¹) and intensities (in parentheses in km mol⁻¹) of *trans*-H₂COOH and *trans-cis*-HC(OH)₂ and their deuterated analogues obtained at the UMP2/aug-cc-pVTZ level of theory.

Unstable products								
No.	trans-H ₂ COOH	trans-H ₂ COOD	trans-HDCOOH	trans-HDCOOH				
			$(D4)^a$	$(D6)^{b}$				
1	3832.4 (54.68)	3082.31 (3.42)	3832.72 (54.75)	3832.66 (54.97)				
2	3081.6 (4.34)	2968.85 (25.21)	3077.35 (6.32)	2974.86 (22.84)				
3	2968.6 (25.98)	2789.71 (35.58)	2174.05 (21.01)	2254.81 (7.26)				
4	1432.3 (37.50)	1429.13 (28.63)	1401.40 (42.65)	1340.88 (5.08)				
5	1398.3 (19.16)	1384.30 (10.21)	1265.42 (9.63)	1286.07 (87.73)				
6	1335.4 (4.64)	1247.18 (197.41)	1243.41 (2.89)	1237.73 (20.50)				
7	1140.9 (0.68)	1110.85 (178.44)	1108.26 (195.25)	1120.89 (123.04)				
8	1108.9 (196.43)	1046.88 (7.14)	1018.67 (48.80)	1013.21 (31.57)				
9	1016.7 (52.01)	926.77 (47.72)	908.88 (5.70)	915.15 (35.00)				
10	795.67 (0.72)	773.84 (2.06)	683.45 (0.97)	697.20 (1.63)				
11	556.00 (21.75)	537.21 (20.48)	553.02 (21.78)	550.10 (22.56)				
12	272.74 (117.89)	205.83 (67.74)	271.17 (116.30)	271.99 (117.46)				
Stable products								
No.	<i>trans-cis</i> -HC(OH) ₂	trans-cis-HC(OD)(OH)	trans-cis-HC(OH)(OD)	<i>trans-cis</i> -DC(OH) ₂				
		trans-OD	cis-OD					
1	3845.4 (85.28)	3845.03 (82.07)	3811.92 (75.12)	3845.3 (85.29)				
2	3811.2 (71.80)	3158.31 (28.93)	3157.88 (31.74)	3811.9 (72.87)				

3	3157.3	(32.04)	2773.36	(47.75)	2799.07	(50.11)	2329.6	(27.16)
4	1419.8	(106.00)	1407.53	(71.54)	1414.56	(117.23)	1353.8	(42.09)
5	1366.1	(32.81)	1298.97	(54.28)	1328.50	(15.75)	1321.5	(215.63)
6	1210.5	(121.54)	1176.15	(267.03)	1203.87	(203.39)	1148.1	(191.46)
7	1149.8	(198.46)	1102.94	(38.27)	1099.98	(77.53)	1065.0	(34.94)
8	1071.2	(34.40)	1018.89	(0.60)	982.50	(40.86)	943.47	(11.88)
9	978.92	(33.63)	894.58	(46.91)	866.56	(32.41)	791.61	(17.69)
10	542.42	(20.51)	512.71	(19.42)	527.06	(20.28)	539.31	(21.05)
11	354.70	(172.90)	291.91	(168.38)	350.81	(140.67)	352.43	(174.16)
12	227.92	(68.44)	257.86	(21.79)	208.93	(44.44)	276.60	(66.57)

^{*a*}D atom in position 4 (Figure 1). ^{*b*}D atom in position 6 (Figure 1).

Figure S1. The change of the total energy for hydrogen atom transfer from *trans*-H₂COOH to *trans-cis*-HC(OH)₂ along the IRC path. The values of energy are calculated with respect to the transition state, for which the energy was set to zero.