Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2014

Electronic Supporting Information

Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells

Tridip Ranjan Chetia, Dipankar Barpuzary, Mohammad Qureshi* Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India - 781039

^aMaterials Science Laboratory, Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India – 781039. Fax: +91-3612582349; Tel: +91-361-2582320; E-mail: mq@iitg.ernet.in

1. Morphology study of the photoanode films:

Figure S1. Field emission scanning electron microscopy (FESEM) images of **A. & B**. One dimensionally ZnO NWs grown on FTO substrates hydrothermally **C. & D**. Top view of ZnO HMSP layer deposited over it by doctor blade technique.

Figure S2. High magnification FESEM image and energy dispersive X-ray (EDX) analysis (A & B) of one dimensional ZnO NWs grown on FTO substrates hydrothermally. (C) High magnification FESEM image of a single ZnO HMSP.

2. XRD analysis of ZnO nanowires grown on glass substrates:

Figure S3. The XRD displays diffraction peaks of (100), (002), (101), (102), and (103) planes that correspond to the ZnO hexagonal wurtzite structure according to JCPDS Card No. 036-1451 and proving 1D growth of ZnO NW along the c-axis normal to the substrate.

3. TEM analysis of ZnO HMSP and CdS-sensitised ZnO HMSP:

Figure S4. A. High resolution transmission electron microscopy (HRTEM) image of ZnO HMSP showing lattice pattern of single crystalline ZnO nanoparticles. **B**. TEM image of a CdS deposited ZnO HMSP. **C**. HRTEM image of the indicated portion of the microsphere showing lattice pattern of CdS QDs deposited over it.

4. FESEM images of CdS sensitised ZnO HMSP:

Figure S5. High- and low-magnification FESEM images of CdS sensitised ZnO microspheres scratched from the photoanodes. **A, B, C**. Magnified images of ZnO microspheres showing the available pores even after CdS sensitisation. **D**. Energy dispersive X-ray (EDX) analysis of CdS sensitised ZnO hollow microspheres.

5. Tauc plots for ZnO NW-CdS, ZnO HMSP- CdS, ZnO NW-ZnO HMSP-

CdS:

Figure S6. (A) Tauc plot for ZnO NW-CdS and **(B)** Tauc plots for ZnO HMSP-CdS and ZnO NW-ZnO HMSP-CdS.

Photoanode	Thickness	Band Gap ZnO (eV)	Band Gap CdS (eV)
	(µm)		
ZnO NW-CdS	~1	3.2	2.69
ZnO HMSP-CdS	~14	3.09	2.35
ZnO NW-ZnO HMSP-CdS	~1+14	3.14	2.39

Table S1. Optical band gap energy of ZnO and CdS estimated from the tauc plots of all the photoanodes.

6. Steady-state fluorescence spectra of pure CdS, ZnO NW and ZnO

HMSP

Figure S7. Steady-state fluorescence spectra of pure CdS, ZnO NW and ZnO HMSP excited at an wavelength of 410 nm.

Table S2. Present scenario of ZnO based solar cells and their relevantperformance parameters along with our result

Ref No.	ZnO Nanostructure	Sensitizer	Counter	Cell	J_{sc}	Voc	FF	η
		QDs	electrode	Area	(mA/cm ²)	(mV)	(%)	(%)
				(cm ²)				
9	ZnO NW	CdSe	Pt/FTO	No	2.1	600	30	0.4
				data				
37	Hierarchical tetrapod-	CdS,	Pt/FTO	0.25	13.85	722	42.4	4.24
	like ZnO nanoparticles	CdSe						
38	ZnO NP	CdS,	Cu ₂ S/Brass	0.15	10.48	683	62.3	4.5
		CdSe						
40	ZnO NP-CdS-GO	CdS	Pt/FTO	1.2	7.3	703	54.6	2.8
	Composite							
SI 1.	ZnO NWs	CdS,	Au/FTO	0.25	17.3	627	38.3	4.2
		CdSe						
SI 2.	ZnO NWs	CdS,	(MSU-F-	0.25	12.6	690	42	3.6

		CdSe	C)*/FTO					
SI 3.	ZnO NWs	CdS	Pt/FTO	No	5.42	580	34	1.1
				data				
SI 4.	ZnO NW(Core)/	CdS	Pt/FTO	0.25	3.68	760	44	1.3
	Zn_2SnO_4 (Shell)							
SI 5.	ZnO NP (Surface	CdS,	Cu ₂ S/Brass	0.25	15.4	620	49	4.7
	passivated with TiO ₂	CdSe						
	shell)							
SI 6	ZnO NW	CdS,	Pt/ITO	No	5.19	661	41.5	1.4
		CdSe		data				
SI 7	ZnO NT	CdSe	Pt/FTO	0.2	2.09	440	41	0.4
Present work	ZnO NW/ZnO HMSP	CdS	Pt/FTO	1	9.01	511	51	2.4

*Mesocellular carbon foam

References:

- SI 1. M. Seol, H. Kim, Y. Tak, K. Yong, Chem. Commun., 2010, 46, 5521
- SI 2. M. Seol, E. Ramasamy, J. Lee, K. Yong, J. Phys. Chem. C, 2011, 115, 22018
- SI 3. C.-Z. Yao, B.-H. Wei, L.-X. Meng, H. Li, Q.-J. Gong, H. Sun, H.-X. Ma, X.-H. Hu, *J. Power Sources*, 2012, 207, 222
- SI 4. T. Bora, H. H. Kyaw, J. Dutta, Electrochim. Acta, 2012, 68, 141
- SI 5. J. Tian, Q. Zhang, E. Uchaker, R. Gao, X. Qu, S. Zhang, G. Cao, Energy Environ. Sci., 2013, 6, 3542
- SI 6. J. Chen, J. Wu, W. Lei, J. L. Song, W. Q. Deng, X. W. Sun, Appl. Surf. Sci., 2010, 256, 7438
- SI 7. L. Luo, G. Lv, B. Li, X. Hu, L. Jin, J. Wang, Y. Tang, Thin Solid Films, 2010, 518, 5146