Supplementary Information

Extended Scale for the Hydrogen-Bond Basicity of Ionic Liquids

Ana Filipa M. Cláudio,^{*a*} Lorna Swift,^{*b*} Jason P. Hallett,^{*b*} Tom Welton,^{*b*} João A. P. Coutinho^{*a*} and Mara G. Freire*^{*a*}

^{*a*}Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal. Tel: +351 234370200; Fax: +351 234370084; E-mail address: maragfreire@ua.pt.

^bDepartment of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.

Table S1. Hydrogen-bond basicity (β) data and van der Waals interaction energy in the equimolar cation-anion mixture (E_{vdW} / (kJ·mol⁻¹)) taken from COSMO-RS calculations for [C₄mim]-based ILs.

IL	β^{10}	β^{18}	$E_{\rm vdW}$ / (kJ·mol ⁻¹)
$[C_2 mim][N(CF_3SO_2)_2]$	0.23	n.a.	-57.77
$[C_4 mim][N(CF_3SO_2)_2]$	0.23	0.42	-65.32
$[C_4C_1 mim][N(CF_3SO_2)_2]$	0.24	n.a.	-67.91
$[C_{5}mim][N(CF_{3}SO_{2})_{2}]$	0.26	n.a.	-69.16
$[C_6 mim][N(CF_3SO_2)_2]$	0.26	0.44	-73.00
$[C_{s}mim][N(CF_{3}SO_{2})_{2}]$	0.29	0.47	-80.81
$[C_{10}mim][N(CF_3SO_2)_2]$	n.a.	0.49	-88.72
$[C_4 mpv][N(CF_3SO_2)_2]$	0.25	n.a	-67.68
$[C_4 mpvr][N(CF_3SO_2)_2]$	0.25	n.a	-67.17
$\begin{bmatrix} C_{1} & P_{2} & P_{2} \\ C_{2} & P_{2} & P_{2} \\ \end{bmatrix}$	0.26	na	-70.26
$[(C_2OC_2)mpvr][N(CF_2SO_2)_2]$	0.28	na	-66 47
$[(0,2),0,2) = [C_{4} \text{mim}][PF_{4}]$	0.19	0.44	-49.96
[C_mim][PF_]	n a	0.50	-57 97
[Comm][PF2]	n.a.	0.50	-66.06
	n.a.	0.55	-74.20
	0.37	0.55	-/9.20
$\begin{bmatrix} C_4 \min \\ \end{bmatrix} \begin{bmatrix} BF_4 \end{bmatrix}$	0.37	0.55 n a	-51 51
$\begin{bmatrix} C_4 C_1 \\ min \end{bmatrix} \begin{bmatrix} DF_4 \end{bmatrix}$	0.50	0.60	-51.51
$\begin{bmatrix} C_{6} \\ mim \end{bmatrix} \begin{bmatrix} DF_{4} \end{bmatrix}$	11.a.	0.00	-50.87
$\begin{bmatrix} C_8 \\ mim \end{bmatrix} \begin{bmatrix} DF_4 \end{bmatrix}$	11.a.	0.03	-04.99
$\begin{bmatrix} C_{10} \\ mim \end{bmatrix} \begin{bmatrix} D\Gamma_{4} \end{bmatrix}$	11.a. 0.49*	0.03	-73.10
$[C_4 \text{mim}][CF_3SO_3]$	0.48	0.57	-55./1
$\begin{bmatrix} C_6 \text{mim} \end{bmatrix} \begin{bmatrix} CF_3 \text{SO}_3 \end{bmatrix}$	n.a.	0.61	-03.0/
$[C_8 \text{mim}][CF_3 \text{SO}_3]$	n.a.	0.64	-/1./1
$[C_{10}\text{mim}][CF_3\text{SO}_3]$	n.a.	0.65	-79.82
$[C_4 \text{mim}][CIO_4]$	n.a.	0.55	-52.75
$[C_4 \text{mim}][C(CN)_3]$	n.a.	0.54	-63.78
$[C_4 \text{mim}][N(CN)_2]$	0.60	0.64	-56.70
$[C_6 mim][N(CN)_2]$	n.a.	0.69	-64.55
$[C_8 mim][N(CN)_2]$	n.a.	0.71	-72.50
$[C_{10}mim][N(CN)_2]$	n.a.	0.75	-80.49
[C ₄ mim][SCN]	n.a.	0.71	-59.37
[C ₄ mim][NO ₃]	n.a.	0.74	-50.83
$[C_6 mim][NO_3]$	n.a.	0.76	-58.83
$[C_8 mim][NO_3]$	n.a.	0.80	-66.91
$[C_{10}mim][NO_3]$	n.a.	0.81	-75.06
[C ₄ mim][CF ₃ CO ₂]	0.84^{*}	0.74	-52.72
[C ₄ mim]I	n.a.	0.75	-61.86
$[C_4 mim][CH_3SO_4]$	0.66	0.75	-59.38
$[C_4 mim][C_8 H_{17} SO_4]$	0.80^{*}	0.77	-88.15
[C ₄ mim][CH ₃ SO ₃]	0.77	0.85	-57.95
[C4mim]Br	n.a.	0.87	-56.46
[C ₄ mim]Cl	0.84	0.95	-53.53
[C ₆ mim]Cl	n.a.	0.97	-61.62
[C ₈ mim]Cl	n.a.	0.98	-69.78
$[C_{10}mim]Cl$	n.a.	0.98	-77.99
$[C_4 mim][(CH_3O)_2PO_2]$	1.12*	1.12	-65.04
[C ₄ mim][CH ₃ CO ₂]	0.85	1.20	-55.57

*experimental data from this work

Fig. S1. Correlation between the experimental values of hydrogen-bond basicity (β) and the E_{vdW} predicted by COSMO-RS: (a) experimental data from Welton and co-workers¹⁰; (b) experimental data from Lungwitz et al.¹⁸.