Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Effect of fluorine substitution on structures and reactivity of Keggin-Al₁₃

in aqueous solution: An exploration of the fluorine substitution

mechanism.

Xiaoyan Jin^{*}, Hai Wu, Xueyue Jiang, Hong Zhang

Department of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, China

Email: gold-2004@126.com

Fig. S1 The water exchange pathways of fluoridated K-Al₁₃-6F. (a), (b) and (c) denote the optimized reactant, transition state and intermediate for K-Al₁₃-6F with inter-trimer bridging fluoridated sites, respectively. (a'), (b') and (c') denote the optimized reactant, transition state and intermediate for K-Al₁₃ with intra-trimer bridging fluoridated sites, respectively. The target water molecule is colored with white.

Table S1. Energy barriers $(kJ \cdot mol^{-1})$ of water exchange on K-Al₁₃-1F and K-Al₁₃-6F relative to reactant.

	K-Al ₁₃ -1F		K-Al ₁₃ -6F	
	μ ₂ -F(1)	µ2-F(2)	µ ₂ -F(1)	µ ₂ -F(2)
TS	44.5	38.2	44.1	39.1
Р	39.6	35.1	40.1	36.8

Fig. S2 The transition state of water exchange on fluoridated K-Al₁₃-2F. (a) two inter-trimer hydroxyl bridges are substituted by F^{-} ; (b) two intra-trimer hydroxyl bridges are substituted by F^{-} ; (c) one inter-trimer and one intra-trimer hydroxyl bridges are cis-substituted; (d) one inter-trimer and one intra-trimer hydroxyl bridges are trans-substituted. The target water molecule is colored with white.

Table S2. Structural change in the water-exchange activated process of K-Al $_{13}$ -2F.

Distances	(a)		(b)		(c)		(d)	
(Å)	R	TS	R	TS	R	TS	R	TS
$Al-O_L$	1.965	3.913	1.979	3.455	1.994	3.476	1.982	3.263
Al-O _t	1.961	1.859	1.994	1.876	1.988	1.871	1.995	1.882
Al-F ₁	1.915	1.854	1.880	1.856	1.889	1.880	1.881	1.859
Al-F ₂	1.906	1.852	1.874	1.849	1.867	1.859	1.890	1.854
Al-O ₁	1.838	1.821	1.856	1.816	1.872	1.813	1.867	1.828
Al-O ₂	1.858	1.846	1.847	1.820	1.840	1.813	1.846	1.816
∑Al-L	11.443	13.145	11.370	12.672	11.450	12.712	11.461	12.502
$\Delta \Sigma$ Al-L	1.701		1.301		1.262		1.041	
Al _t -O	1.908	1.900	1.909	1.900	1.907	1.900	1.908	1.901

Fig. S3 The transition state of water exchange on fluoridated K-Al₁₃-3F. (a) two inter-trimer and one intra-trimer hydroxyl bridges are substituted by F^- ; (b) one inter-trimer and two intra-trimer hydroxyl bridges are substituted by F^- . The target water molecule is colored with white.

Distances	(a)		(b)		
(Å)	R	TS	R	TS	
Al-O _L	1.980	3.488	1.980	3.685	
Al-O _t	1.933	1.841	1.940	1.827	
Al-F ₁	1.877	1.830	1.858	1.842	
Al-F ₂	1.862	1.839	1.859	1.830	
Al-F ₃	1.881	1.843	1.872	1.853	
Al-O ₁	1.846	1.823	1.850	1.803	
∑Al-L	11.379	12.664	11.359	12.840	
$\Delta \Sigma$ Al-L	1.285		1.481		
Al _t -O	1.903	1.894	1.904	1.888	

Table S3. Structural change in the water-exchange activated process of K-Al₁₃-3F.

Fig. S4 The transition state of water exchange on fluoridated K-Al $_{13}\text{-}4\text{F}.$

process of \mathbf{K} -Al ₁₃ -4 \mathbf{F} .		
Distances (Å)	R	TS
Al-O _L	1.960	3.813
Al-O _t	1.911	1.816
Al-F ₁	1.848	1.819
Al-F ₂	1.868	1.829
Al-F ₃	1.849	1.826
Al-F ₄	1.854	1.827
∑Al-L	11.290	12.930
$\Delta \Sigma$ Al-L	1.6	40
Al _t -O	1.903	1.885

Table S4. Structural change in the water-exchange activated process of K-Al₁₂-4F.

Table S5. Energy barriers $(kJ \cdot mol^{-1})$ of water exchange on K-Al₁₃-nF $(n=1\sim4)$ relative to reactant.

Barriers	А	В	С	D
K-Al ₁₃ -0F	28.7	-	-	-
K-Al ₁₃ -1F	44.5	38.2	-	-
K-Al ₁₃ -2F	45.1	48.9	40.8	51.2
K-Al ₁₃ -3F	65.1	61.9	-	-
K-Al ₁₃ -4F	79.5	-	-	-

Table S6. The influence of fluoridation on NPA charges (e) on octahedral Al of monomer aluminum and K-Al₁₃.

	W AL OF	K-Al ₁₃ -6F			
Charges	K-Al ₁₃ -0F	µ2-F(1)	μ ₂ -F(2)	$AI(H_2O)_5(OH)$	$AI(H_2O)_5F$
Al	2.050	2.046	2.044	1.945	1.970