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SI1. Master equations for ENDOR relaxation in a two-spin system in high T approximation

In the high temperature approximation the transition probabilities between a pair of level i and j are the same in 

both directions, i.e. wij = wji. The distribution of populations Ni at each time point can be calculated by solving the 

rate equations (Solomon, Phys. Rev. Vol. 99, p.559, 1955):
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with the definitions and . N0
i indicate the populations at thermal equilibrium and 011 wwww SIa  211 wwww SIb 

w0, w2 are the probabilities of the forbidden zero and double quantum transitions. 

In order to reduce the system of equations, it is convenient to transform (1) by introducing a set of four new 

variables defined as:
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Where nI, and nS,  refer to the population difference of the EPR and ENDOR transitions as defined in Fig. 1b. 

Expressed with the new variables, the system gets the well-known form of the Solomon equations:




























































 n
nn
nn

N

R
RR
RR

n
n
n
N

dt
d

SS

II

Sx

xI

S

I
0

0

000
00
00
0000

(S3)

with the relaxation rates R defined as: 
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The general solution is given by: 

tR

Btt
S

Btt
I

entn

necectn

necectn

S

I


 





0

43

21

)(

)(

)(
21

21





(S5)

With the exponents: . 
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 and nS
B are the nuclear and electron  Boltzmann polarizations. Considering the electron Zeeman as the dominant 

interaction we set and neglect the nuclear spin Boltzmann polarization, IS 00   B
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Assuming that the difference between electron and nuclear spin transition rates is much greater than between the 

two forbidden cross transition rates:   the two exponents simplify to:xSISI RRRwwww  0211
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Thus the exponents reduce to the electron-spin lattice and nuclear-spin lattice relaxation rate, respectively. The 

coefficients of eq. S5 depend on the initial conditions, i.e. the polarization at begin (t = 0) of the observed time 

evolution.  We used Mathematica (Wolfram Research, Inc.) to solve the system and simplify the solutions, finally 

we obtain for the ENDOR lines (eq. 1 in the main text):
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and the polarization of the EPR lines gets the form:
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We stress here that the coefficients and in equation S7 (or eq. 1 main text) and correspondingly in eq. S8  are 12,0In 34,0In

not the Boltzmann factors but the population differences at begin of the observed time evolution.

SI2. Measurement of T1I at 34 and 94 GHz: Davies ENDOR spectrum as a function of tR.

Figure S1: Intensity of the Davies ENDOR line at + 2.5 MHz as a function of the repetition time tr.  Exp. 

conditions:mw =34 GHz, T = 20 Kmw: 200 ns, rf = 15 us,  10 shots per point, 1 scan.

T1I = 41.3 ± 11 ms 



Figure S2: Intensity of the Davies ENDOR line at + 2.5 MHz as a function of the repetition time tr.  Exp. 

conditions:mw =94 GHz, T = 50 Kmw: 200 ns, rf = 25 us,  10 shots per point, 1 scan.

T1I = 160.5 ± 25 ms 



SI3. Global fit of W-band data

In an attempt to rationalize the discrepancy between the fitted 1 and the T1S values in the W-band data (Fig. 3b and 

Table 1), a global model has been utilized, which considers the two datasets of the decay curves at n
ENDOR = +2.5 

MHz and -2.5 MHz simultaneously. The model fits the four amplitudes as independent quantities and the two rates 

as common parameters. The fitted values are reported in Table S1. We observe that the new value for 1 lies 

between the values of 4 and 15 ms found by the individual fits in Fig. 3. The error 1 also reflects this range of 

values. Therefore, the difference in 1 seems to reflect a real behavior of the curve. This difference might be due to 

different spectral diffusion effects at the two spectral positions of the ENDOR line.

The global fit also underestimates the second time constant 2, as visible also on Figure S3. Therefore, we conclude 

that the independent fit of the two decay curves with values in Table 1 is closer to the experimental values.

Figure S3: Global nonlinear fit of the intensity of the CP-ENDOR lines at n
ENDOR = + 2.5 MHz (blue) and -2.5 MHz 

(red) as a function of td at 94 GHz, T = 50 K

mw = 94 GHz A1 (ms) (ms) A2 (ms) (ms)
ENDOR line: + 2.5MHz +0.50 ± 0.15 7 5 to 13 +0.47 ± 0.15 69 49 to 114
ENDOR line: - 2.5MHz +0.31 ± 0.25 7 5 to 13 -0.27 ± 0.25 69 49 to 114

Table S1: Parameters of the global fit for the kinetic curves of Fig 3b.   represents the error given by the fit.  



SI4. Simulated CP-ENDOR intensities as a function of the number of shots

Figure S4: Numerical simulations for the intensities of the ENDOR lines 12 (dots) and 34 (triangles) in the 

asymmetric CP-ENDOR (blue), the symmetric CP-ENDOR (red) and residual ENDOR (CP with RF off) as a 

function of the number of shots (repetitions of the sequence). Parameters: EPR = 94 GHz, T = 5 K, tr = T1S, T1I = T1x 

= 10T1S.


