Supporting Information

Ortho- Hydroxylation of Aromatic Acids by a non-heme Fe^V=O species: How important is the ligand design?

Azaj Ansari and Gopalan Rajaraman*

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India

Email: rajaraman@chem.iitb.ac.in

Figure S1. B3LYP computed a) optimized structure and b) spin density plot of the ground state (²II-*ts1*).

Figure S2. B3LYP computed potential energy surface (ΔG in kJ/mol) for the O...O cleavage starting from 1_{cis} species.

B3LYP-D Function	onal					
II-ts1	Fe-O1	01-02	O3-H1	O2-H1		
⁶ II-ts1	1.684	1.968	1.018	1.612		
⁴ II- <i>ts1</i>	1.721	1.780	1.023	1.576		
^{2}II -ts l	1.651	2.450	1.534	1.019		
II-1	Fe-O1	Exp^1				
⁴ II- 1	1.652	1.58				
² II-1	1.654					
III-ts I	Fe-O1	01-02				
⁶ III- <i>ts1</i>	1.672	2.015				
II-1	Fe-O1	Fe-O2	Fe-N1	Fe-N2	Fe-N3	Fe-N4
² II-1(BPMEN)	1.654	1.988	1.989	2.129	2.035	2.000
2 II-1(TPA) ²	1.651	1.993	1.971	2.109	1.965	1.974
II-ts1						
2 II- <i>ts1</i> (BPMEN)	1.656	1.935	1.978	2.130	2.045	2.011
2 II-tsl(TPA) ²	1.654	1.932	1.980	2.088	1.972	1.968
D2I VD Everation	_1					
B3LYP Functiona		01.02	02.111	02 111		
11- <i>ts 1</i>	Fe-OI	01-02	03-HI 1.019	02-HI 1.612		
°11- <i>lS1</i> 411_tg1	1.084	1.908	1.018	1.012		
$2II_{ts}I$	1.721	1.000	1.025	1.370		
11-131	1.044	2.430	1.055	1.004		
II- 1	Fe-O1	Exp ¹				
⁴ II- 1	1 657	1.58				
² II- 1	1.651	1.00				
III-ts1	Fe-O1	01-02				
⁶ III- <i>ts l</i>	1.669	2.048				
⁴ III- <i>ts l</i>	1.654	2.928				
² III-ts l	1.656	2.594				
II-ts l	Fe-O1	Fe-O2	Fe-N1	Fe-N2	Fe-N3	Fe-N4
² II- <i>ts1</i> (BPMEN)	1.658	1.923	1.991	2.151	2.069	2.016
^{2}II -ts $l(\text{TPA})^{2}$	1.708	1.863	1.980	2.054	1.995	1.989
. ,						

Table S1. Computed bond parameters (in *Angstroms*) of transition states and $Fe^{V}=O$ species.

BPMEN	<s**2></s**2>	Expected	<s**2></s**2>	Expected
		Spin		Spin
	BPMEN		TPA	
l _{cis}		- - -		
⁶ l _{cis}	8.7601	8.75	8.7593	8.75
41_{cis}	3.8076	3.75	3.8020	3.75
$^{2}1_{\rm cis}$	0.7825	0.75	0.7864	0.75
II-ts1				
⁶ II- <i>ts1</i>	8.8563	8.75	8.8486	8.75
⁴ II- <i>ts1</i>	3.8406	3.75		-
2 II-ts1	1.6603	0.75	1.4994	0.75
1 _{trans}				
⁶ 1 _{trans}	8.7616	8.75	8.7616	8.75
⁴ 1 _{trans}	3.8062	3.75	3.8051	3.75
$^{2}1_{\text{trans}}$	0.7744	0.75	0.7754	0.75
III-ts1				
⁶ III- <i>ts1</i>	8.8477	8.75	8.8486	8.75
⁴ III- <i>ts1</i>	3.7719	3.75	3.8239	3.75
^{2}III -ts l	1 7343	0.75	1 6382	0.75
	1.70.10	0.170	1.0002	0110
III-1				
⁵ III- 1	6 0608	6.00	6.0558	6.00
³ III-1	2.0227	2.00	2 0191	2.00
¹ III-1	0.0000	0.00	0.0000	0.00
	0.0000	0.00	0.0000	0.00
II-1				
4II-1	4 7814	3 75	3 7814	3 75
² II-1	1.7011	0.75	1 7746	0.75
II-ts?	1.7770	0.75	1.7710	0.75
4II_ts2	4 6105	3 75	3 8039	3 75
$\frac{11 t_{32}}{2 \Pi_{-ts} 2}$	1 6724	0.75	1 6452	0.75
II 132	1.0724	0.75	1.0432	0.75
6II- 2	8 7604	8 75	8 7607	8 75
4II- 2	3 8120	3 75	3 8004	3 75
$\frac{11-2_{is}}{2II_{-}2}$	0.7824	0.75	0 7807	0.75
$\frac{11-2_{\rm ls}}{11-z_{\rm ls}}$	0.7824	0.75	0.7807	0.75
6II +c 2	8 7500	875	8 7600	Q 75
411 +~ 2	0./399	0.13	2 7002	0.75
211 4~ 2	3.8083 0.7961	5./5	<u> </u>	5./5
	0.7801	0.75	0.//3/	0.75
611.2	0.7505	0.75	0.7(10	0.75
4H 2	8./393	8./5	8.7010	8.75
⁴ 11- 3	3.8133	3.75	3.7911	3.75
² 11-3	0.7841	0.75	0.7722	0.75

Table S2. B3LYP-D computed spin expectation values of Iron species.

1				
⁶ 1	8.7588	8.75	8.7621	8.75
⁴ 1	3.8245	3.75	3.8169	3.75
² 1	0.8629	0.75	1.0546	0.75
II-1				
⁴ II(1)-1A	4.7814	3.75		
² II(1)-1A	1.7770	0.75		
⁴ II(1)-1B	4.8140	3.75		
² II(1)-1B	1.7853	0.75		
⁴ II(1)-1C	4.8254	3.75		
² II(1)-1C	1.7876	0.75		

[(BPMEN)Fe ^{III} -OOH] ²⁺ species			
	Fe	01	O2
1 _{cis}			
⁶ 1 _{cis}	2.005	-0.322	-0.523
$^{4}1_{cis}$	1.671	-0.242	-0.529
$^{2}1_{cis}$	1.378	-0.241	-0.547
II-ts1			
⁶ II- <i>ts</i> 1	1.748	-0.065	-0.517
⁴ II- <i>ts l</i>	1.398	0.1847	-0.729
^{2}II -ts l	0.611	-0.324	0.230
1 _{trans}			
⁶ 1 _{trans}	1.790	-0.166	-0.450
⁴ 1 _{trans}	1.582	-0.243	-0.433
$^{2}1_{\text{trans}}$	1.283	-0.228	-0.427
III-ts1			
⁶ III-ts1	1.607	-0.113	-0.423
⁴ III-ts1	1.538	-0.388	-0.225
² III-ts1	1.375	-0.470	-0.264

 Table S3. B3LYP-D computed Mulliken charge of Iron species.

Figure S3. B3LYP computed a) optimized structure and b) spin density plot of the ground state (⁶III-*ts1*).

Figure S4. B3LYP computed potential energy surface (ΔG in kJ/mol) for the O...O bond cleavage starting from $\mathbf{1}_{trans}$ species.

Note:- Although all the structures were successfully optimized with B3LYP-D functionals, transition states ⁴III-*ts1 and* ²III-*ts1* could not be achieved. For these two species single point B3LYP-D calculations on the B3LYP geometries are performed. As these transition states are high-lying, these are unlikely to affect the mechanistic conclusions derived.

Figure S5. B3LYP-D computed Eigen-value plot incorporating energies computed for dbased orbitals for ${}^{2}1_{cis}$ species (energies are given in eV).

Figure S6. B3LYP-D computed Eigen-value plot incorporating energies computed for d-based orbitals for ²II-*ts1* species (energies are given in eV).

Figure S7. B3LYP-D computed Eigen-value plot incorporating energies computed for d-based orbitals for ${}^{6}1_{trans}$ species (energies are given in eV).

Figure S8. B3LYP-D computed Eigen-value plot incorporating energies computed for d-based orbitals for ⁶III-*ts1* species (energies are given in eV).

Figure S9. B3LYP computed of relaxed potential-energy scan for dihedral angle rotation from *cis* to *trans* isomer.

When the *trans*-isomer is generating through relaxed scan from the *cis*-isomer where the benzoic acid dihedral angle is rotate in step wise fashion and its maximum estimate is computed to be 51.9 kJ/mol barrier, indicating the likely hood of obtaining both the isomers under ambient conditions.

Figure S10. B3LYP computed potential energy surface (ΔG in kJ/mol) for the electrophilic attack pathway for the *ortho*-hydroxylation reaction.

Figure S11. B3LYP-D optimized structure of the ground state of a) ⁶II-2 and b) ⁶II-3.

Figure S12. B3LYP-D Computed spin density plot of ²II-1(2) species.

Figure S13. B3LYP-D computed spin density plots of (a) ⁴II-1**B** and (b) ⁴II-1**C**.

Figure S14. Computed orbitals of a) $Fe(d_{xy})^2$ and b) $Fe(d_{yz})$ of II-1B); c) $Fe(d_{xy})^2$ and d) $Fe(d_{yz})$ of II-1C

	Fe	0
⁴ II(1)- 1 A	2.985	0.757
² II(1)- 1 A	1.103	0.970
⁴ II(1)- 1B	2.975	0.748
2 II(1)-1B	1.131	0.933
⁴ II(1)-1C	2.996	0.768
2 II(1)-1C	1.062	1.019
~ /		
$^{4}\text{II}(2)$ -1 ²	2.985	0.757
$^{2}\text{II}(2)-1^{2}$	1.103	0.970

Table S4. B3LYP-D computed Mulliken spin densities for Fe^V=O isomers.

Figure S15. B3LYP computed potential energy surface (ΔG in kJ/mol) (green for BPMEN and red for TPA²). All energies are in kJ/mol.

Full reference for reference number 82 which is quoted in the main article

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09 (Revision A.1), Gaussian, Inc., Wallingford, CT, 2009.

References

- 1. F. T. de Oliveira, A. Chanda, D. Banerjee, X. Shan, S. Mondal, L. Que. Jr., E. L. Bominaar, E. Munck and T. J. Collins, Science 2007, **315**, 835-838.
- 2. A. Ansari, A. Kaushik and G. Rajaraman, J. Am. Chem. Soc. 2013, 135, 4235-4249.