Electronic Supplementary Information

Mechanistic insight into highly efficient gas permeation and separation in a shape-persistent ladder polymer membrane

Jianhai Zhou, Xiang Zhu, Jun Hu, Honglai Liu,* Ying Hu

State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, China

Jianwen Jiang*

Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore

Step	Slow Decompression Conditions	Duration (ps)
1	NVT, $T_{\rm max}$	50
2	NVT, T _{final}	100
3	NPT, $0.02P_{\text{max}}$, T_{final}	50
4, 5	NVT, T_{max} ; NVT, T_{final}	50, 100
б	NPT, $0.6P_{\text{max}}$, T_{final}	50
7, 8	NVT, T_{max} ; NVT, T_{final}	50, 100
9	NPT, P_{max} , T_{final}	50
10, 11	NVT, T_{max} ; NVT, T_{final}	50, 100
12	NPT, $0.5P_{\text{max}}$, T_{final}	5
13, 14	NVT, T_{max} ; NVT, T_{final}	5, 10
15	NPT, $0.1P_{\text{max}}$, T_{final}	5
16, 17	NVT, T_{max} ; NVT, T_{final}	5, 10
18	NPT, $0.01P_{\text{max}}$, T_{final}	5
19, 20	NVT, T_{max} ; NVT, T_{final}	5, 10
21	NPT, P_{final} , T_{final}	800

Table S1. A 21-step MD compression and relaxation scheme.^{1,2}

Table S2. Atomic charges and bond lengths of CO₂, CH₄, N₂, O₂ and H₂.

Molecule	Atom	Charge (e)	Bond length (Å)
CO^{3}	С	0.576	1.180
CO_2	0	-0.288	
CII^4	С	-0.660	1.090
CH_4	Н	0.165	
N_{2}^{5}	Ν	0	1.102
O_2^{6}	0	0	1.208
${ m H_2}^7$	Н	0	0.740

Fig. S1 Simulated sorption isotherms of CH_4 and O_2 in (a) PIM-EA-TB and (b) PIM-SBI-TB.

Fig. S2 Simulated sorption isotherms of H_2 in (a) PIM-EA-TB and (b) PIM-SBI-TB.

Fig. S3 Simulated isosteric heats of CH₄ and O₂ sorption in (a) PIM-EA-TB and (b) PIM-SBI-TB.

Fig. S4 Simulated isosteric heats of H₂ sorption in (a) PIM-EA-TB and (b) PIM-SBI-TB.

Fig. S5 MSDs of O₂, N₂, CH₄, CO₂ and H₂ in (a) PIM-EA-TB and (b) PIM-SBI-TB.

References

- 1 G. S. Larsen, P. Lin, K. E. Hart and C. M. Colina, Macromolecules, 2011, 44, 6944.
- 2 K. E. Hart, L. J. Abbott, N. B. McKeown and C. M. Colina, *Macromolecules*, 2013, 46, 5371.
- 3 L. L. Zhang, Z. Q. Hu and J. W. Jiang, J. Phys. Chem. C, 2012, 116, 19268.
- 4 S. Rives, H. Jobic, A. Beale and G. Maurin, J. Phys. Chem. C, 2013, 117, 13530.
- 5 S. C. Zhuo, Y. M. Huang, J. Hu, H. L. Liu, Y. Hu and J. W. Jiang, J. Phys. Chem. C, 2008, 112, 11295.
- 6 J. W. Jiang and S. I. Sandler, *Langmuir*, 2004, **20**, 10910.
- 7 R. F. Cracknell, Mol. Phys., 2002, 100, 2079.