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1 Analysis of the DNP spectra

The DNP spectra for the 20 mM and 5 mM samples were measured as a function of temperature and

as a function of MW irradiation time tMW . All the spectra were then analyzed by decomposing them

into two, SE-DNP and CE-DNP, lineshapes, varying their relative contributions as a function of

temperature and tMW . Before the analysis we modi�ed the basic SE lineshapes by slightly changing

their frequency pro�les. To demonstrate the need for these modi�cations we show in Fig. S1 the

analysis of the steady state DNP spectra at 6 K and 10 K for the 20 mM and 5 mM samples,

respectively, using the non-modi�ed SE spectra. As can clearly be seen, the best �t spectra deviate

from the experimental ones at the frequency edges. The modi�cation of the SE spectra (see Fig.

5), which is explained in the text, corrects for these deviations. In Figs. S2-S9 we show high quality

�ts of many DNP spectra relying on the modi�ed SE spectra FSE(ωMW ) and the original basic CE

spectra FCE(ωMW ).
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Fig. S1: Analysis of the frequency swept DNP spectra E(tMW , ωMW ) (circles) of (a) the 20 mM
sample measured at 6 K at tMW=320 sec and of (b) the 5 mM sample measured at 10
K at tMW=320 sec. Shown are the SE contribution bSE(tMW )F ∗SE(ωMW ) (magenta lines),
the CE contribution bCE(tMW )FCE(ωMW ) (blue lines) and the �t Ssim(tMW , ωMW ) (black
lines) done with F ∗SE(ωMW ) taken exactly as calculated and without modi�cation. The
�tting procedure is described in the text.
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Fig. S2: Analysis of the frequency swept DNP spectra E(tMW , ωMW ) (circles) of the 20 mM sam-
ple measured at 6 K starting at tMW=0.2 sec and ending with tMW = 320 sec ≈ 5Tbu.
Shown are the SE contribution bSE(tMW )FSE(ωMW ) (magenta lines), the CE contribution
bCE(tMW )FCE(ωMW ) (blue lines) and the �t Ssim(tMW , ωMW ) (black lines). The �tting
procedure is described in the text.
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Fig. S3: Analysis of the frequency swept DNP spectra E(tMW , ωMW ) (circles) of the 20 mM sample
measured at 10 K starting at tMW=0.2 sec and ending with tMW = 240 sec ≈ 5Tbu.
Shown are the SE contribution bSE(tMW )FSE(ωMW ) (magenta lines), the CE contribution
bCE(tMW )FCE(ωMW ) (blue lines) and the �t Ssim(tMW , ωMW ) (black lines). The �tting
procedure is described in the text.
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Fig. S4: Analysis of the frequency swept DNP spectra E(tMW , ωMW ) (circles) of the 20 mM sample
measured at 20 K starting at tMW=0.2 sec and ending with tMW = 240 sec ≈ 5Tbu.
Shown are the SE contribution bSE(tMW )FSE(ωMW ) (magenta lines), the CE contribution
bCE(tMW )FCE(ωMW ) (blue lines) and the �t Ssim(tMW , ωMW ) (black lines). The �tting
procedure is described in the text.
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Fig. S5: Analysis of the frequency swept DNP spectra E(tMW , ωMW ) (circles) of the 20 mM sam-
ple measured at 40 K starting at tMW=0.1 sec and ending with tMW = 30 sec ≈ 5Tbu.
Shown are the SE contribution bSE(tMW )FSE(ωMW ) (magenta lines), the CE contribution
bCE(tMW )FCE(ωMW ) (blue lines) and the �t Ssim(tMW , ωMW ) (black lines). The �tting
procedure is described in the text.
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Fig. S6: Analysis of the frequency swept DNP spectra (circles) of the 5 mM sample measured at 10
K starting at tMW=0.1 sec and ending with tMW = 1000 sec ≈ 5Tbu. Shown are the SE con-
tribution bSE(tMW )FSE(ωMW ) (magenta lines), the CE contribution bCE(tMW )FCE(ωMW )
(blue lines) and the �t Ssim(tMW , ωMW ) (black lines). The �tting procedure is described
in the text.
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Fig. S7: Analysis of the frequency swept DNP spectra E(tMW , ωMW ) (circles) of the 5 mM sample
measured at 20 K starting at tMW=0.1 sec and ending with tMW = 560 sec ≈ 5Tbu.
Shown are the SE contribution bSE(tMW )FSE(ωMW ) (magenta lines), the CE contribution
bCE(tMW )FCE(ωMW ) (blue lines) and the �t Ssim(tMW , ωMW ) (black lines). The �tting
procedure is described in the text.
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Fig. S8: Analysis of the frequency swept DNP spectra E(tMW , ωMW ) (circles) of the 5 mM sample
measured at 30 K starting at tMW=0.1 sec and ending with tMW = 480 sec ≈ 5Tbu.
Shown are the SE contribution bSE(tMW )FSE(ωMW ) (magenta lines), the CE contribution
bCE(tMW )FCE(ωMW ) (blue lines) and the �t Ssim(tMW , ωMW ) (black lines). The �tting
procedure is described in the text.
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Fig. S9: Analysis of the frequency swept DNP spectra E(tMW , ωMW ) (circles) of the 5 mM sample
measured at 40 K starting at tMW=0.1 sec and ending with tMW = 240 sec ≈ 5Tbu.
Shown are the SE contribution bSE(tMW )FSE(ωMW ) (magenta lines), the CE contribution
bCE(tMW )FCE(ωMW ) (blue lines) and the �t Ssim(tMW , ωMW ) (black lines). The �tting
procedure is described in the text.
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2 TEMPOL DNP spectra

In our previous work on samples of TEMPOL we measured DNP spectra as a function of temperature

only after reaching the steady state enhancement and did not measure DNP spectra as a function

of tMW [1]. We were able to get good �ts at all temperatures. For the 40 mM degassed TEMPOL

sample the analysis indicated that at 6 K the DNP spectrum was mainly determined by the SE-

lineshape. For comparison with the TOTAPOL results described in this paper, we measured two

new DNP spectra of TEMPOL at 6 K; one at tMW = 0.2 sec and one at the steady state with

tMW = 240 sec. Both spectra show very similar shapes and both can be analyzed by the basic non-

modi�ed SE and CE shapes as previously described [1]. From these spectra we therefore conclude

that for TEMPOL at 6 K and above there is no need to modify the basic SE lineshape.

Fig. S10: Normalized frequency swept DNP spectra E(tMW , ωMW ) of a 40 mM degassed TEMPOL
sample (in 54/46 v% DMSO/H2O) at tMW = 0.2 sec (black squares) and tMW = 240sec
(red circles). The lines in this �gure are to guide the eye.
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3 From small to large spin systems

Quantum mechanical based DNP simulations of the spin dynamics of electrons and nuclei are limited

by the size of the matrix representing the spin Hamiltonian. For full Liouville space calculations

including relaxation our calculations are restricted to 5-6 spins. Clearly more spins are needed in

order to describe the macroscopic e�ects of DNP such as those we see in experiments. In order to

study the propagation of nuclear polarization in model systems Hovav et al. [2] used rate equations

for the density matrix populations for the SE-DNP mechanism, which allowed simulations of up to

10 spins. Also for the case of SE-DNP, Kockenberger et al. increased the spin system to 25 spins

[3]. A more simpli�ed approach to large spin systems is to write rate equations for the dynamics

of the polarization of each electron and nuclear spin in the system. The problem with this type

of approach is that one is presumably losing the quantum character of the system. In this paper

we are interested in understanding the DNP dynamics in real samples. We therefore decided it

was essential to use the spin polarization rate equation approach so that we can come as close

as possible to simulating real systems. However in order to preserve the quantum nature of the

problem, we performed full quantum simulations on small systems to estimate the DNP buildup

rate of each nuclear spin. We then assume that these rates are good representatives of the build up

rates in large spin systems. For the SE-DNP case the estimation for these rates from small systems

is straightforward as we will describe in the next section.

The CE-DNP case is, however, more complex because the e�ective MW irradiation strength

depends not only on the interaction between the electron and nuclear spin but also on the proximity

of the electron-nuclear system to the CE-condition [4]. When dealing with a macroscopic sample

with many electrons and nuclei the state mixings de�ning the CE-conditions are complex and it

will be necessary to extend the de�nition of the CE-conditions before we can incorporate those in

DNP calculations of larger model system. Therefore at the moment our calculations are restricted

to SE-DNP on systems with one electron and many nuclear spins.

After approximating the buildup rates of the nuclei we add spin di�usion terms to the polarization

rate equations which spread the nuclear polarization throughout the bulk [5, 6, 7, 8, 9]. Similar

rate equations for the polarizations have been used recently by Gri�n and coworkers in order to

describe the e�ect of the spin di�usion process on the nuclei close to the electron and the bulk

nuclei [10]. Here we use a similar set of coupled rate equations in order to provide a qualitative

description of the e�ects of the change of temperature (and thus of relaxation times) on the SE-DNP

enhancement mechanism. As discussed below, the individual MW irradiation rates in our equations

are adapted from the quantum mechanical behavior [2, 11] by calculating them from the pseudo-

hyper�ne interactions and the nuclear Zeeman frequency and neglecting o� resonance e�ects. In
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addition a spin di�usion rate is introduced as well as spin-lattice relaxation parameters.

4 A two-dimensional model system of nuclei surrounding an

electron

To demonstrate the SE-DNP spin dynamics we composed a two-dimensional square grid of nuclei i

surrounding a single electron with a lattice parameter of 3.1 Å (the average distance between protons

in bulk water). The purpose of the simulations is to calculate the dependence of the electron and

nuclear polarizations, Pe and Pi respectively, on the MW irradiation time tMW . To do so we assign

to each nucleus an e�ective DQ irradiation �eld (in practice applied at ωe − ωn) of strength

ωSE
1,eff,i = 2π

|A±|
2ωn

ω1 = 2π
µ0γeγH~ · 3cos(θ)sin(θ)

4ωnr3e−i
ω1, (1)

which depends on the distance re−i between the electron and nucleus i , the angle θ between this

vector and the magnetic �eld, the MW irradiation strength ω1 and the Larmor frequency of the

nuclei ωn [2, 11]. µ0 is the permeability of free space and γe and γH are the gyromagnetic ratios of

an electron and a proton, respectively. For protons at a distance of 7 Å ωSE
1,eff,i ≈300 kHz for an

applied �eld of ω1/2π = 1MHz. Thus these e�ective �elds ωSE
1,eff,i can easily become two orders of

magnitude smaller than the actual applied �eld ω1 itself.

In real systems the nuclear dipolar interaction modi�es ωSE
1,eff,i. As was shown for linear systems

this interaction mixes the nuclear spin states spreading the DQ MW matrix elements to states that

belong to nuclei that are not directly interacting with the electron and causing their polarization

enhancement [2]. This dipolar-assisted DNP enhancement process is of course also present in real

systems, thus increasing the area of directly polarized nuclei around the electron. The three dimen-

sionality of real systems prevents this area from expanding by much because of the conservation of

the norm of the DQ part of the MW irradiation matrix and the con�nement of the polarized area

due to the action of T1n [2, 11]. Without a theoretical framework that enables exact evaluation of the

dipolar-assisted e�ective MW �elds, we can only mimic the e�ect of the nuclear dipolar interaction

by spreading the direct e�ective �eld ωSE
1,eff,i of each nucleus i to its neighbors. In the present calcu-

lations we distributed each ωSE
1,eff,i value between the nucleus i itself, leaving a �eld ω

SE
i,i = fi,iω

SE
1,eff,i,

and contributing to its neighboring nuclei j a �eld ωSE
j,i = fj,iω

SE
1,eff,i , with fi,i =

1√
9
and fj,i = 2

4
√
9

for the 4 nearest-neighbor nuclei j that are 3.15 Å away from nucleus i and fj,i =
2

8
√
9
for the 8

next-nearest-neighbor nuclei j removed by 6.25 Å or less from nucleus i. After this redistribution
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of the e�ective MW �elds the e�ective excitation rate of each nucleus k is de�ned as

RSE
bu,k ≡ (

∑
j

ωSE
j,k )

2T2x (2)

with the introduction of an electron-nuclear cross relaxation time T2x [2, 11]. The fj,i values are

chosen such that
∑

j(fj,i)
2 = 1 so that

{
ωSE
1,eff,i

}2
=
∑
j

{
ωSE
j,i

}2
(3)

and the overall e�ective irradiation rate
∑

iR
SE
bu,i stays constant in the system. In this way the

nuclear dipolar interaction does not modify the overall buildup rate of the system, but changes the

individual rates of the di�erent nuclei.

The electron spin lattice relaxation rate R1e is chosen to be much larger than all RSE
bu,i, such that

it has little e�ect on the buildup times of the nuclei. As long as R1e is large the electron states are

maintained at their Boltzmann distribution and the MW �eld determines the buildup of nuclear

polarization. For small R1e values (approaching the nuclear spin-lattice relaxation rate) the electron

polarization cannot recover from the partial saturation of the DQ or ZQ transition and as a result

it lowers the nuclear polarization [11].

The nuclear spin-lattice relaxation rates R1,i of nucleus i can have one of two values: when i

belongs to the �core nuclei� that are at a distance of 9 Å or less from the electron R1,i = R1c [11]

and for the rest of the nuclei R1,i = R1n. To represent the fact that the core nuclei relax faster than

the bulk nuclei due to hyper�ne relaxation we chose R1c = 10 ·R1n.

The spin di�usion is represented in the polarization rate equations by a dipolar relaxation rate

R1d,ij, de�ning the characteristic time of equalization of the polarization of neighboring nuclei, as

was done in earlier studies [7, 8, 12, 13]. The quenching of the nuclear dipolar interaction by the

electron-nuclear hyper�ne interaction is taken into account by using a spin di�usion rate R1d,ij

between core nuclei i and j that is 100 times smaller than R1d,ij between bulk nuclei i and j. In all

cases R1d,ij � R1,i such that all bulk nuclei are polarized almost uniformly and all nuclei (except for

part of the core nuclei) experience about the same polarization buildup rate RSE
bu and reach about

the same end polarization P SE
end.

The di�erential equations for the electron and nuclear polarization, Pe = Pe(tMW ) and Pi =

Pi(tMW ), used during our simulations are:

dPi

dtMW

= −R1,iPi −
∑
(j)i

1

2
R1d,ij(Pi − Pj) +

1

2
Rbu,i(Pi − Pe) (4)
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dPe

dtMW

= −R1e(Pe − Pe0) +
∑
i

1

2
Rbu,i(Pi − Pe) (5)

where the sum over (j)i is restricted to nuclei that are nearest neighbors of i, and where the number

of nuclei in the model are Nn. The initial electron polarization equals Pe0 = Pe(0) and in all

simulations we neglected the initial nuclear Boltzmann polarizations. We also ignore o�-resonance

e�ects due to frequency shifts due to hyper�ne and dipolar interactions and o�-resonance irradiation

on the electron SQ transitions. Solving this set of equations results in the time dependent nuclear

polarizations and their steady state values P SE
end,i.

The e�ect of fast spin di�usion and the dependence of the SE steady state polarizations on R1n is

shown in Figs. 10-11 of the main text. Fig. 10a shows the distance and angular dependence of the

nuclear polarization without spin di�usion (R1d = 0 sec−1). The angular dependence caused by the

pseudo-secular hyper�ne interaction is partially wiped out by the dipolar-assisted DNP mechanism.

Figs 10b-c show the same model system with spin di�usion, where lengthening R1n increases P SE
end,i.

Fig. 11 summarizes the values of P SE
end = 1/NSE

n

∑
i P

SE
end,i and R

SE
bu = 1/NSE

n

∑
iR

SE
bu,i as a function

of R1n and the number of nuclei NSE
n in the grid. These �gures are described in more detail in the

main text. As the buildup times are proportional to T2x, increasing its value increases the individual

buildup rates RSE
bu,i, extends the area of direct polarization around the electron and increases both

P SE
end and RSE

bu .

In real samples most nuclei are polarized by more than one SE-active electron. When irradiating

with a certain frequency ωMW electrons with a Larmor frequency of ωMW + ωn result in positive

nuclear polarization (DQ irradiation) and electrons at ωMW−ωn result in negative nuclear polariza-

tion (ZQ irradiation). Our DNP spectrum analysis model assumes that the �nal enhancement when

irradiating at ωMW is proportional to the di�erence between the number of electrons at ωMW + ωn

and the number of electrons at ωMW − ωn. The e�ect of di�erent electrons partially canceling

each other's DNP induced polarization is shown in Fig. S1. Here the electron in the bottom right

corner results in positive polarization and the electron in the top right corner results in negative

polarization. The hyper�ne interactions of the negative polarizing electron with the nuclei were arti-

�cially weakened by 80% in order to show the averaging of the nuclear polarization originating from

two electron polarizing sources. This simulation was performed by extending the rate equations

described above to include a second electron spin.
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Fig. S11: 2D contour plot of the steady state nuclear polarization for a system of two SE electrons
(marked by black pixels), one in the lower left corner with MW irradiation on its DQ
transition and one in the upper right corner with MW irradiation on its ZQ transition. The
hyper�ne interactions of the negative polarizing electron with the nuclei were arti�cially
weakened by a 80%. Each nucleus is a pixel whose color represents the nuclear polarization
normalized to the electron thermal equilibrium polarization. The nuclei are 3.1 Å apart
in both dimensions, and there are 960 nuclei in all. The other parameters of the system
are: R1e = 100 sec−1, R1c = 10 ·R1n sec

−1, R1n = 10−2 sec−1, Rb
1d = 103 sec−1, Rc

1d = 10
sec−1, ω1 = 1 MHz and T2x = 5µsec. The rate equations used to calculate these plots are
given above.
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