Electronic Supplementary Information

Surface tension effects on the phase transition of a DPPC bilayer with and without protein: A molecular dynamics simulation[†]

Xian Kong^a, Shanshan Qin^b, Diannan Lu^{*a}, Zheng Liu^{*a}

^a Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

E-mail: <u>*ludiannan@tsinghua.edu.cn; liuzheng@mail.tsinghua.edu.cn.</u>

^b Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Simulated annealing simulations

Fig. S1 Simulated annealling simulations were run to determine the range of temperature and surface tension among which the phase transition may occur. During a simulated annealing simulation, the system was first equilibrated for 8 μ s under a higher temperature (305 K), at which the bilayer was in a liquid crystal phase. Then the coupling temperature was linearly reduced to 275 K within 6 μ s to bring the lipid bilayer into a gel phase. Temperature change during a typical simulated annealing is shown in (a). (b) gives the change of area per lipid (APL) during the annealing period. (c) gives a comparasion of simulated annealing with different cooling speed and with the "quasi-static" cooling method proposed by Rodgers JM *et al* (ref 21 in main text). This shows the simulated annealing is capable of determining temperature range for the phase transition.

Summary for Equilibrium Simulations

	DPPC bilayer	AqpZ embedded DPPC	
		bilayer	
DPPC beads number	216	160	
W beads number	3778	3759	
AqpZ beads number	0	474	
	6370	6153	
Considered Temperatures (K)	275,280,285,290,295,300,305		
Considered Surface tension			
(dyn/cm)	$\pm 30, \pm 40, \pm 30, \pm 23, \pm 20, \pm 15, \pm 10, \pm 5, 0$		

Table S1 Simulation summary

RMSD of Protein

Table S2 RMSD of Protein backbone beads at temperature 290K

Surface tension (dyn/cm)	RMSD (nm)	Standard deviation(nm)
-50	0.21	0.02
-10	0.20	0.02
0	0.22	0.02
10	0.23	0.02
50	0.21	0.02