Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2014

Electrocatalytic Oxygen Reduction Kinetics on Fe-center of Nitrogen-doped Graphene

Jing Sun^a, Ya-Hui Fang^{a,b} and Zhi-Pan Liu^{a*}

^aShanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China

^bSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China

*E-mail address: zpliu@fudan.edu.cn (Z.-P. Liu).

Figure S1. The IS, TS and FS structures of O₂ hydrogenation step. $(O_2^*+H^++e^-\rightarrow OOH^*)$ on FeN₄ (top panel) and Fe(CN)N₄ (bottom panel). The labeled distances are in angstroms. The grey, blue, red and purple balls represent C, N, O and Fe, respectively.

Figure S2 The dissociated O atoms on FeN₄ (Left) and on Fe(CN)N₄ (Right) at 0.8 V condition. The labeled distances are in angstroms. The grey, blue, red and purple balls represent C, N, O and Fe, respectively

Figure S3. The IS, TS and FS structures for the OOH hydrogenation to H_2O_2 step (OOH*+H⁺+e⁻ \rightarrow HOOH*) on FeN₄ (top panel) and Fe(CN)N₄ (bottom panel). The labeled distances are in angstroms.

Figure S4: The complete mechanism of O_2 reduction on the two FeN sites. Indicated data are the free energy change of the reaction step at 0.8 V vs. SHE. The values in parentheses are the free energy barrier of the key elementary reactions. For the color of the data, Red represents FeN₄ site and blue for Fe(CN)N₄ site.