Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A Computational Study of Carbon Dioxide Adsorption on Solid Boron

Qiao Sun*,[†], Meng Wang^{†,‡}, Zhen Li^{*,}, Aijun Du[§] and Debra J Searles^{*,†,◊}

[†] Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Brisbane, Australia.

[‡] Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China.

Institute of Superconducting & Electronic Materials, The University of Wollongong, NSW 2500, Australia.

§ School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.

School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia.

Fig. S1 Computed minimum energy configurations and transition state of CO_2 adsorption on (a) α -B₁₂ and (b) γ -B₂₈ surfaces involving type B interactions (top and side view of two adsorptions and transition state).

		Phys	TS	Chem
α-B ₁₂	Adsorption energy	-4.97	1.19	-41.81
12	r(B–O)	3.013	2.350	1.494
	r(C–O)	1.177	1.192	1.330
	r(B–B)	1.598	1.624	1.683
	$\alpha (O - C - O)$	179.8	157.7	115.4
	CT	0.003	-0.029	-0.606
γ -B ₂₈	Adsorption energy	-4.89	4.50	-21.78
1 -0	r(B–O)	3.063	2.205	1.511
	r(C–O)	1.177	1.190	1.314
	r(B–B)	1.621	1.648	1.719
	$\alpha (O - C - O)$	179.6	155.9	117.6
	ĊT	0.005	-0.01	-0.532

Table S1 Adsorption energy in kcal/mol, bond distance (r) in Å, bond angle (α) in deg and charge transfer (CT) in electron for the type B of CO₂ adsorption on α -B₁₂ and γ -B₂₈ surfaces.

Table S2 The calculated topological parameters at the BCPs of CO₂ adsorption on α -B₁₂ and γ -B₂₈ of the type A.

Complexes	BCP ^a	$ ho_{ m bcp}$	$ abla^2 ho_{ m bcp}$	$V_{\rm bcp}$	G_{bcp}	$H_{\rm bcp}$
(a) $CO_2 \alpha - B_{12}$ Phy	O1–B	0.0088	0.0247	-0.0047	0.0055	0.0008
	CO1	0.4359	0.4099	-1.6000	0.8513	-0.7487
(b) $CO_2 \alpha - B_{12} TS$	O1–B	0.0491	0.0577	-0.0470	0.0307	-0.0163
	CO1	0.4126	-0.0063	-1.4206	0.7095	-0.7111
(c) $CO_2 \alpha - B_{12}$ chem	C–B	0.1607	-0.1500	-0.2809	0.1217	-0.1592
	O1–B	0.1666	0.5157	-0.3739	0.2514	-0.1225
(d) $CO_2 \alpha - B_{12}$ Phy	CO1	0.2559	-0.5852	-0.4946	0.1741	-0.3205
	O1–B	0.0093	0.0238	-0.0051	0.0055	0.0004
	CO1	0.4360	0.4145	-1.6019	0.8527	-0.7492
(e) CO_2_α -B ₁₂ _TS	O1–B	0.0737	0.1749	-0.1349	0.0893	-0.0456
	CO1	0.4072	-0.1211	-1.3748	0.6722	-0.7026
(f) CO_2_α -B ₁₂ _chem	C–B	0.1609	-0.1788	-0.2755	0.1154	-0.1601
	O1–B	0.1632	0.5099	-0.3675	0.2474	-0.1201
	C01	0.2687	-0.6202	-0.5903	0.2176	-0.3727

^{*a*} Atomic numbering refers to Fig. 4. The ρ_{bcp} , $\nabla^2 \rho_{bcp}$, V_{bcp} , G_{bcp} , and H_{bcp} is electron density, the Laplacian of the electron density, potential energy density, kinetic energy density, and energy density at the BCP, respectively.