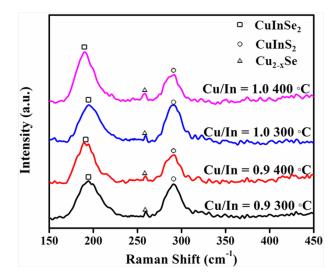
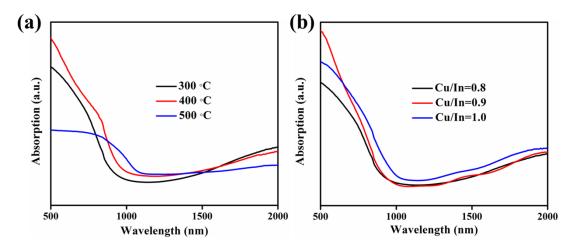
Supporting Information

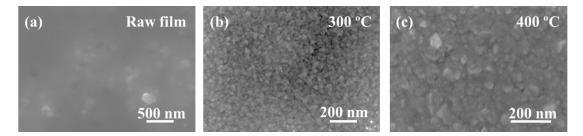
CuIn(S,Se)₂ Thin Films Prepared from a Novel Thioacetic Acidbased Solution and Their Photovoltaic Application


Yian Xie,^a Yufeng Liu,^{a,*} Yaoming Wang,^a Xiaolong Zhu,^a Aimin Li,^a Lei Zhang,^a Mingsheng Qin,^a Xujie Lü, ^a and Fuqiang Huang^{a,b,*}

^a CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China


^b State Key Laboratory of Rare Earth Materials Chemistry and Applications, College

of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China


* Corresponding author. Fax: +86-21-52416360. Email: <u>liuyf@mail.sic.ac.cn</u> Fax: +86-21-52416360. Email: <u>huangfq@mail.sic.ac.cn</u>.

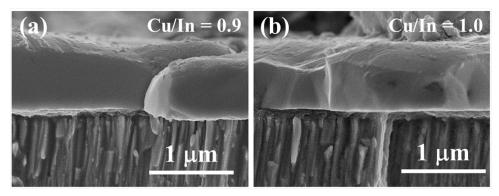

Fig. S1. Raman spectra of CISSe thin films with different Cu/In ratios of 0.9 and 1.0 annealed at 300 °C or 400 °C. Copper selenide phase could be detected from all samples.

Fig. S2. Absorption spectrum of CISSe thin films with (a) different Cu/In ratios annealed at 500 °C, (b) different annealing temperature with Cu/In ratio of 0.8 (precursor solution).

Fig. S3. Top view FESEM images of (a) CIS raw film and CISSe films annealed at (b) 300 °C and (c) 400 °C with Cu/In ratio of 0.8.

Fig. S4. Cross sectional FESEM images of CISSe thin films with Cu/In ratios of (a) 0.9 and (b) 1.0 after annealing at 500 °C for 30 minutes.

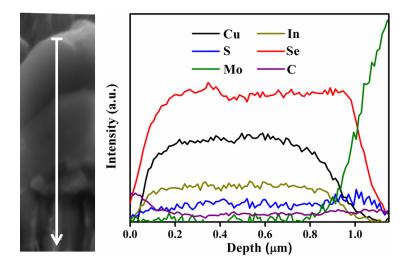
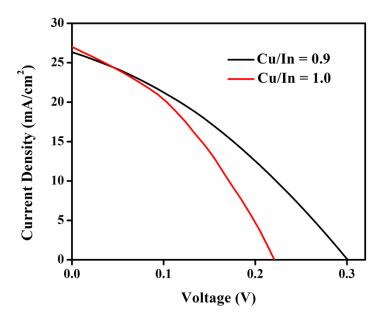



Fig. S5. EDS line-scan profile of CISSe thin film along the direction.

Fig. S6. Current-voltage (J-V) curves of the CISSe-based thin film solar cells with Cu/In ratios of 0.9 and 1.0 under a standard AM 1.5 solar illumination at an intensity of 100 mW/cm^2