## **Supporting information**

## Exploring homo-FRET to quantify the oligomer stoichiometry of membrane-bound proteins involved in a cooperative partition equilibrium

Ana M. Melo<sup>a</sup>, Aleksander Fedorov<sup>a</sup>, Manuel Prieto<sup>a</sup>, and Ana Coutinho<sup>\*,a,b</sup>

- <sup>a</sup> Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- <sup>b</sup> Dep. Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo
  Grande, 1749-016 Lisboa, Portugal
- \* To whom correspondence should be addressed. E-mail: ana.coutinho@ist.utl.pt



Figure S1 – Fluorescence anisotropy decay from free Lz-BODIPY. The blue solid line is the best fit of eqn (6) to the anisotropy decay obtained for Lz-BODIPY in buffer (1.5  $\mu$ M, *f*=0.53). The residuals of the fit are also shown.



Figure S2 – The extent of homo-FRET critically depends on the membrane surface density of Lz-A488. Changes in the steady-state anisotropy of (a) 0.5  $\mu$ M and (b) 3  $\mu$ M lysozyme (f= 0.50) as a function of total phospholipid concentration (POPC:POPS 70:30 LUVs). The blue solid curves are the best-fit of eqn (17) to the steady-state anisotropy data (k = 6 and  $K_{ag} = 2 \times 10^{14}$ ). The cyan, green and red doted dashed lines represent the contribution of the aqueous and membrane–bound monomeric and oligomeric species to the overall anisotropy of the sample, respectively.