Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supplementary Information

Tunable band gaps in silicene/MoS₂ heterobilayers

N. Gao, J. C. Li,* Q. Jiang*

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun,

130022, China

^{*} Author to whom any correspondence should be addressed: Fax: +86 431 85095876; E-mail: <u>ljc@jlu.edu.cn</u>, jiangq@jlu.edu.cn.

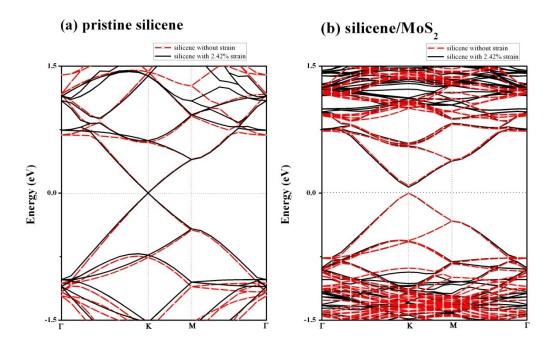


Fig. S1 The band structures of (a) pristine silicene and (b) stable silicene/ MoS_2 heterobilayer. The both adopt two matching procedures: silicene without strain and silicene with 2.42% stain.

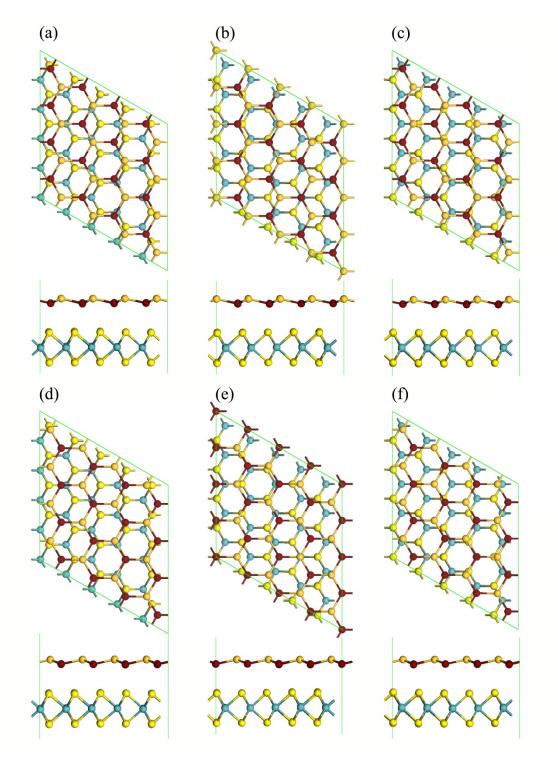


Fig. S2 Top and side views of silicene/ MoS_2 configurations. The yellow, blue, khaki and brown balls denote S, Mo, A and B sublattices of Si atoms in silicene, respectively. The supercell is represented by the green lines.

Table S1: Structural parameters and electronic properties of silicene/MoS₂ heterobilayers shown in Fig. S2. $E_{\rm b}$ (meV/Si), d (Å) and $E_{\rm g}$ (meV) stand for binding energy, interlayer distance and band gap values, respectively.

Structure	E _b (meV/Si)	d (Å)	$E_{\rm g}({\rm meV})$
a	120.32	2.93	70
b	119.32	2.96	52
c	119.53	2.95	51
d	119.88	2.95	50
e	120.04	2.93	71
f	120.04	2.92	72