Supporting Information for

Large-scale synthesis and formation mechanism study of basic aluminium sulfate microcubic crystals

Yuguo Xia, Bo Chen, Xiuling Jiao,* and Dairong Chen

School of Chemistry & Chemical Engineering, National Engineering Research Center for colloidal materials,

Shandong University, Jinan 250100 P. R. China

Figure S1. XRD pattern and TEM image of raw materials

Low crystalline γ -AlOOH nanoparticles with a size of ca.5 nm as directed by the arrow were used

as the raw material, and the corresponding XRD pattern and TEM image are shown in Figure S1.

Figure S2. Unit cell of boehmite bulk.

Figure S3. HR-TEM images of products under (a) 10 mmol Na₂SO₄, (b) 10 mmol H₂SO₄.

As shown in the HRTEM images of prepared nanoplate and nanorod, only (100), (010) and (001) planes are involved in this system.

Figure S4. Fully protonated (100) plane of γ -AlOOH and corresponding electronic property.

Atom	Charge	Bond	Length/Å	Population	E_{ads}^{total} / eV	E_{ads} / eV
0	-1.05	О-Н	1.006	0.53	01.52	-11.44
Al	1.95/1.95	Al-O	1.993/2.002	0.35/0.34	-91.53	

Note: E_{ads}^{total} is the total adsorption energy for fully protonated surface and E_{ads} is the average adsorption energy for per H⁺.

Figure S5. XRD patterns for the products obtained in time-depended experiments at 240 °C for different time: 30 min (a), 45 min (b), 60 min (c), 75 min (d), 90 min (e) and 120 min (f).

Figure S6. SEM images of products at 75 min. (a) TEM image, (b) SEM image of t surface of one cube.

Figure S7. XRD pattern of final product with 0.133 mol H⁺ added (a) and SEM image of product with 0.200 mol H⁺ added (b).

Figure S8. Status of mixture in typical synthesis (a) and standing for 30 min (b)

Figure S9a. XRD patterns of as-synthesized products at temperatures from 160 °C to 300 °C

Figure S9b. SEM images of products formed at 160 °C (a), 200 °C (b), 240 °C (c), 300 °C (d)

 Table S1. Crystallographic Data for Basic Aluminium Sulfate.

formula	Al ₃ S ₂ O ₁₅ H ₉		
Mr	394.13		
crystal group	trigonal		
space group	R3		
a (Å)	7.0135(9)		
b (Å)	7.0135(9)		
<i>c</i> (Å)	17.1580(2)		
α (deg)	90		
β (deg)	90		
γ (deg)	120		
Ζ	3		
$V(Å^3)$	730.915(16)		
D_c (g cm ⁻³)	2.686		
$\mu (\mathrm{mm}^{-1})$	0.921		
F (000)	600		
no. of unique reflns	197		
no. of obsd reflns[I> $2\sigma(I)$]	162		
parameters	25		
GOF	1.013		
final R	R ₁ =0.0447		
indices $[I > 2\sigma(I)]^{a,b}$	wR ₂ =0.0963		
<i>R</i> indices	R ₁ =0.0367		
(all data)	wR ₂ =0.0935		
Largest difference peak and hole(e Å-3)	0.63 and -0.46		
$aR_{1} = \sum F_{0} - F_{c} / \sum F_{0} \cdot b_{w}R_{2} = \sum (F_{0}^{2} - F_{c}^{2})^{2} / \sum w (F_{0}^{2} -$	$[F_0^2)^2]^{0.5}$.		

Crystal plane	Bulk	003	101	012
Number of atoms	78	156	156	156
Slab thickness (Å)		15	15	15
Surface areas (Å ²)		88.3	87.0	101.2
Surface periodicity		$1a \times 2b$	$2a \times 1b$	$2a \times 1b$
K-point mesh	4*4*2	4*2*1	2*4*1	2*4*1
Surface energy (mJ/m ²)		1622.8	1767.2	860.44

Table S2. Parameters used for calculation of the surface energy.

Based on the above result, supposing the total quality (m) and the single volume (V_0) are the same in polyhedron and cube. The surface energy data of (012), (101) and (003) planes have been given in main text. The total surface energy can be calculated according to the following equations.

$$\Sigma E_{p} = (6\gamma_{101}S_{101} + 2\gamma_{003} S_{003} + 6\gamma_{012} S_{012}) \times (m/\rho V_{o})$$

$$\Sigma E_c = 6\gamma_{012} S_{012} \times (m/\rho V_o)$$

The total volume of polyhedron predicted by BFDH method is 32835.554 Å³. Take this value as V_0 , and ΣE_p is $8.37 \times 10^{-14} \times (m/\rho V_0)$ mJ and ΣE_c is $1.65 \times 10^{-15} \times (m/\rho V_0)$ mJ, respectively, which illustrates that the surface energy of cube exposing {012} plane is much lower than that of polyhedron with same volume. Therefore, it is considered that the cube exposing {012} plane is the most stable morphology.