Assessing long-range corrected functionals with physically-adjusted range-separated parameter for calculating the polarizability and the second hyperpolarizability of polydiacetylene and polybutatriene chains.

Sébastien Nénon, Benoît Champagne, and Milena I. Spassova

SUPPORTING INFORMATION

N	LC-BLYP (µ adj.)	LC-BLYP (µ = 0.47)	CAMB3LYP	CCSD(T)		
	α (a.u.)					
1	125.95	122.14	129.14	113.23		
2	300.43	275.33	304.86	249.20		
3	543.17	463.32	532.93	413.42		
4	847.10	670.20	793.98	592.20		
5	1175.71	887.15	1074.66	779.02		
6	1544.46	1109.56	1366.91	969.96		
	γ (x 10 ³ a.u.)					
1	70	62	73			
2	714	536	752	537		
3	3262	1933	3216	1898		
4	9823	4438	8552	4240		
5	21220	7904	17093	7880		
6	39486	12075	28506	12300		

Table S1. Longitudinal linear polarizability and second hyperpolarizability for increasingly largePDA oligomers calculated using the 6-31G(d) basis set and different levels of approximation.

Ν	LC-BLYP (µ adj.)	LC-BLYP (μ = 0.47)	CAMB3LYP	CCSD(T)		
	α (a.u.)					
1						
2	294.79	290.06	300.62	250.62		
3	644.25	604.23	649.28	504.42		
4	1161.14	1022.02	1138.72	833.26		
5	1845.90	1524.37	1758.43	1225.14		
6	2721.15	2091.85	2491.92			
	γ (x 10 ³ a.u.)					
1						
2	226	213	198	355		
3	2128	1888	1985	2429		
4	10136	8007	9563	9090		
5	33882	22780	31154	22800		
6	90730	50236	78579			

Table S2. Longitudinal linear polarizability and second hyperpolarizability for increasingly large PBT oligomers calculated using the 6-31G(d) basis set and different levels of approximation.

Figure S1. Evolution with chain length of the $\alpha_x/\alpha_{CCSD(T)}$ ratios for PDA (top) and PBT (bottom) chains as determined from 6-31G(d) calculations.

Figure S2. Evolution with chain length of the $\gamma_X/\gamma_{CCSD(T)}$ ratios for PDA (top) and PBT (bottom) chains as determined from 6-31G(d) calculations.