Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Support Information

For

Role of oxygen impurity on the mechanical stability and atomic cohesion of Ta_3N_5 semiconductor photocatalyst

Jiajia Wang, Jianyong Feng, Li Zhang, Zhaosheng Li* and Zhigang Zou*

National Laboratory of Solid State Microstructures, Department of Physics, Ecomaterials and Renewable Energy Research Center (ERERC), and College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, People's Republic of China.

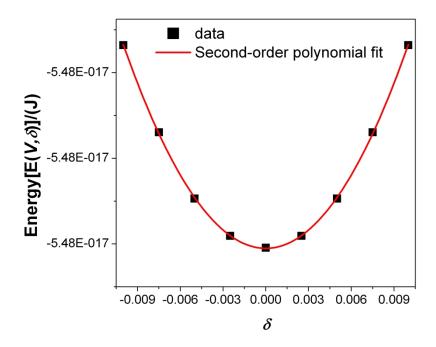
*Corresponding Authors: Tel: +86-25-83686630, Fax: +86-25-83686632, E-mail: zsli@nju.edu.cn or zgzou@nju.edu.cn

The elastic constants of orthorhombic crystals are calculated using the method proposed by Ravindran¹, et al. Since the calculation procedures of all elastic constants are almost identical, we then only use c_{44} as an example to conduct a detailed discussion.

If we apply following distortion matrices

$$\begin{pmatrix}
\frac{1}{(1-\delta^2)^{1/3}} & 0 & 0 \\
0 & \frac{1}{(1-\delta^2)^{1/3}} & \frac{\delta}{(1-\delta^2)^{1/3}} \\
0 & \frac{\delta}{(1-\delta^2)^{1/3}} & \frac{1}{(1-\delta^2)^{1/3}}
\end{pmatrix}$$
(S-1)

to the lattice of Ta_3N_5 (where δ is lattice strain), the total energy of Ta_3N_5 associated with this distortion can be expressed as:


$$E(V, \delta) = E(V_0, 0) + V_0(2\tau_4 \delta + 2c_{44} \delta^2)$$
 (S-2)

where V_0 and $E(V_0,0)$ are the volume and total energy of the unstrained Ta₃N₅, respectively, and τ_4 is the strain tensor. It is seen that, the elastic constants c_{44} can be extracted from the second derivative of the total energy $E(V,\delta)$. With the lattice strain δ varying from -0.01 to 0.01 (interval = 0.0025), we can get corresponding total energies $E(V,\delta)$. The dependence of total energy $E(V,\delta)$ on the lattice strain δ is shown in Fig. S1. Based on the second-order polynomial fit, the value of $2V_0c_{44}$ is determined. After dividing $2V_0c_{44}$ by $2V_0$, we can get the elastic constant c_{44} .

After obtaining all elastic constants, the bulk modulus (B), shear modulus (G) and Young's modulus (E) can be derived from the Voigt-Reuss-Hill approximation². More calculation details of modulus please refer to Ravindran¹, et al.'s work. Using above mentioned energy-strain method, elastic constants and bulk modulus of Ta_2N_3 are calculated and listed in Table S1. It is seen that, except the c_{66} , all our calculated elastic constants are in good agreement with other theoretical results³. The discrepancy in c_{66} between our results and other theoretical work may be ascribed to: (i) our calculation method is the energy-strain method, while the method in Ref. 3 is the stress-strain method; (ii) the stress amplitude used in our calculation varies from -0.01 to 0.01, which may be different from that in Ref. 3. However, the discrepancy in c_{66} does not affect the bulk modulus calculation, because bulk modulus calculation does not need c_{66} . Our calculated B of Ta_2N_3 is 327 GPa, which is in good agreement with the result in Ref. 3 and the experimental value (319 GPa)⁴.

References

- 1. P. Ravindran, L. Fast, P. Korzhavyi, B. Johansson, J. Wills and O. Eriksson, *J. Appl. Phys.*, 1998, **84**, 4891-4904.
- 2. R. Hill, Proc. Phys. Soc., 1952, 65, 349-354.
- 3. C. Jiang, Z. Lin and Y. Zhao, Phys. Rev. Lett., 2009, 103, 185501.
- 4. A. Friedrich, B. Winkler, L. Bayarjargal, E. A. Juarez Arellano, W. Morgenroth, J. Biehler, F. Schröder, J. Yan and S. M. Clark, *J. Alloys Compd.*, 2010, **502**, 5-12.

Fig. S1. Dependence of total energy $E(V, \delta)$ on the lattice strain δ .

Table S1. Calculated single-crystal elastic constants c_{ij} (GPa) and polycrystalline bulk modulus B (GPa) of Ta₂N₃.

	c_{11}	c_{22}	c_{33}	c_{44}	c_{55}	C ₆₆	c_{12}	c_{13}	c_{23}	Ba
This work	465	611	640	166	192	-115	245	199	177	327
Ref. 3	456	610	639	165	193	-54	245	203	176	327

 $^{^{}a}$ Exp 4 . = 319 GPa