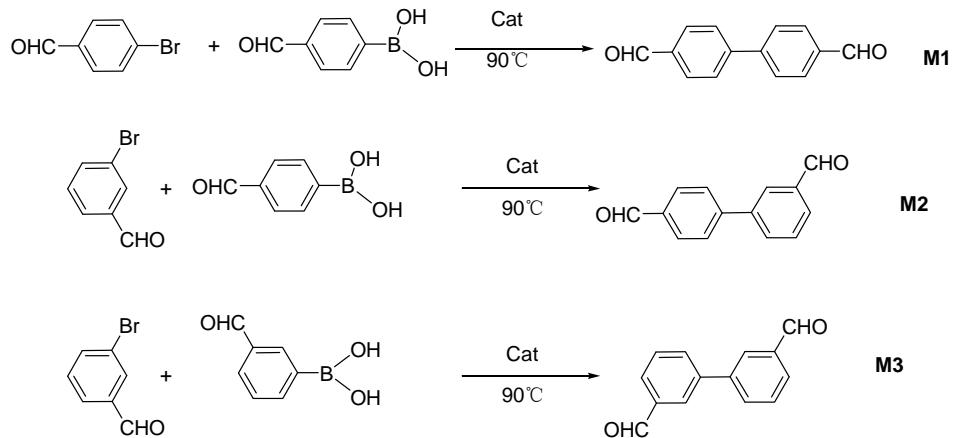


Supporting Information

*for **Physical Chemistry Chemical Physics***

Dimeric Phenanthroimidazole for Blue Electroluminescent Materials: The Effect of Substituted Position Attaching to Biphenyl Center


**Zhiming Wang^a*, Ying Feng^a, Hui Li^a, Zhao Gao^b, Xiaojuan Zhang^a, Ping Lu^b,
Ping Chen^c*, Yuguang Ma^b, Shiyong Liu^c**

^aSchool of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China.

^bState Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China

^cState Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

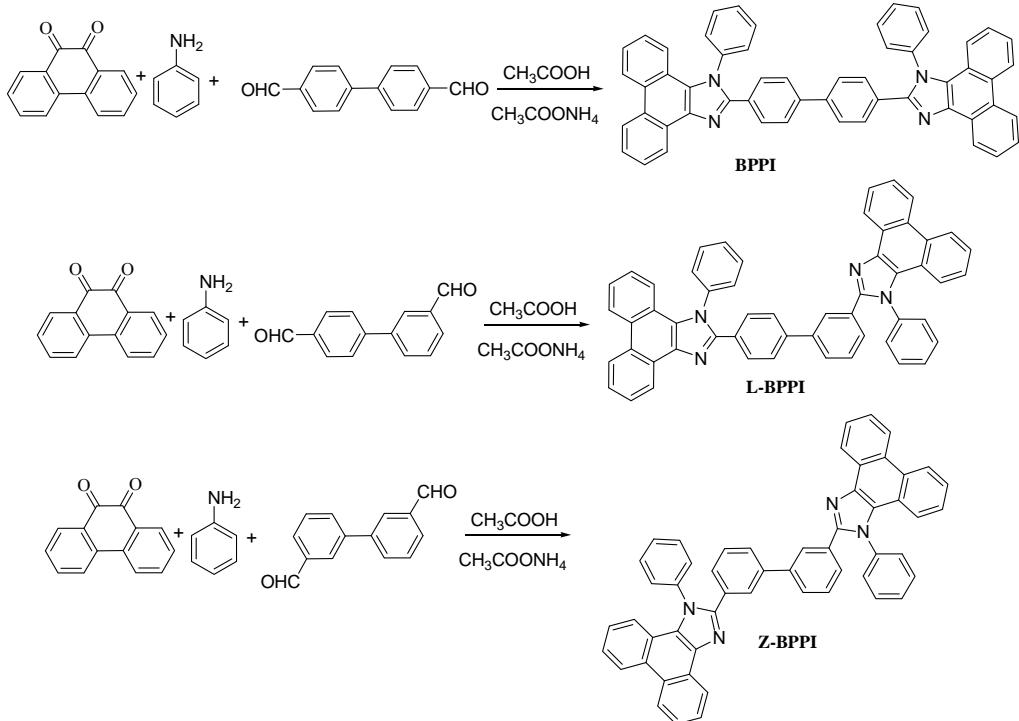
Synthesis and Characterization

Scheme S1 The synthetic routes of the corresponding biphenyl dicarboxaldehyde

Biphenyldicarboxaldehyde (M)

A mixture of 4-bromobenzaldehyde (or 3-bromobenzaldehyde, 2.1 g, 11.2 mmol), 4-formylphenylboronic acid (3-formylphenylboronic acid, 1.65 g, 11.0 mmol), Pd(PPh₃)₄ (128.0 mg, 0.11 mmol, 1 %), sodium carbonate (5.3 g, 50 mmol), THF (150 mL) and distilled water (25 mL) was refluxed for 2 days under nitrogen. The crude product was purified by column chromatography on silica gel using CH₂Cl₂/CH₃COOC₂H₅ as eluent to afford a yellow solid.

4,4'-Biphenyldicarboxaldehyde (M1)


The raw materials are 4-bromobenzaldehyde and 4-formylphenylboronic acid. (1.89 g, Yield: 80.5%) MALDI-TOF (*m/z*): [M+] calcd. C₁₄H₁₀O₂, 210.07; found, 211.9.

3,4'-Biphenyldicarboxaldehyde (M2)

The raw materials are 3-bromobenzaldehyde and 4-formylphenylboronic acid. (2.10 g, Yield: 84.3%) MALDI-TOF (*m/z*): [M+] calcd. C₁₄H₁₀O₂, 210.07; found, 211.0.

3,3'-Biphenyldicarboxaldehyde (M3)

The raw materials are 3-bromobenzaldehyde and 3-formylphenylboronic acid. (2.15 g, Yield: 85.0%) MALDI-TOF (*m/z*): [M+] calcd. C₁₄H₁₀O₂, 210.07; found, 211.7.

Scheme S2 The synthetic routes of **BPPI**, **L-BPPI** and **Z-BPPI**

Bis(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)biphenyl

A mixture of phenanthrene-9,10-dione (1.04 g, 5 mmol), aniline (3.57 g, 30 mmol), ammonium acetate (3.05 g, 50 mmol) and M1 (or M2, or M3, 0.55g, 2.4 mmol) were refluxed in acetate acid for 2 hours, then poured into a methanol solution with stirring. After filtering, the crude product was purified by chromatography.

4,4'-bis(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)biphenyl (BPPI)

(3.16g, Yield:83.3%) ¹H NMR (500 MHz, DMSO, ppm): 8.94 (d, 2H), 8.89 (d, 2H), 8.72 (d, 2H), 7.80–7.65 (m, 22H), 7.57 (t, 2H), 7.35 (t, 2H) , 7.09 (d, 2H). MALDI-TOF (*m/z*): [M+] calcd. C₅₄H₃₄N₄, 738.28; found, 739.0. Anal Calc. for C₅₄H₃₄N₄: C, 87.78; H, 4.64; N, 7.58. Found: C, 87.80; H, 4.62; N, 7.57.

3,4'-bis(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)biphenyl (L-BPPI)

(2.84g, Yield:73.6%) ¹H NMR (500 MHz, DMSO, ppm): 8.97 (d, 2H), 8.91 (d, 2H), 8.74 (d, 2H), 7.82–7.70 (m, 17H), 7.67 (d, 2H), 7.58 (t, 2H) , 7.51 (t, 1H) , 7.45(d, 2H), 7.37 (t, 2H), 7.16-7.12(m, 2H). MALDI-TOF (*m/z*): [M+] calcd. C₅₄H₃₄N₄, 738.28;

found, 739.9. Anal Calc. for $C_{54}H_{34}N_4$: C, 87.78; H, 4.64; N, 7.58. Found: C, 87.67; H, 4.61; N, 7.55.

3,3'-bis(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)biphenyl (Z-BPPI)

(2.76g, Yield:75.4%) 1H NMR (500 MHz, DMSO, ppm): 8.97 (d, 2H), 8.92 (d, 2H), 8.78 (d, 2H), 7.83-7.79 (m, 6H), 7.75-7.71 (m, 6H), 7.67-7.64 (m, 6H), 7.61 (t, 2H), 7.48 (m, 4H) ,7.38 (t, 2H), 7.15 (d, 2H). MALDI-TOF (m/z): [M+] calcd. $C_{54}H_{34}N_4$, 738.28; found, 741.0. Anal Calc. for $C_{54}H_{34}N_4$: C, 87.78; H, 4.64; N, 7.58. Found: C, 87.76; H, 4.64; N, 7.57.