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SI1. Derivation of egn (16) in the main text.

The general solution of egn (13) may be written in the transcendental integral form

L _kef
cu (t) = (KMlga—lsn-l _ ke¢3RT)e—ket +KyfBqt {a,i‘,l (t)- Bn'{ﬁ_ kee—ketI#a({;)dg}}. (S1)
M 0 M

Under the conditions k, — 0 and/or t =0, eqn (S1) simplifies into

% Ag.- “1| = Bnt
e = (Kmfa "B —kedlRr ) + KMﬁa{c& e } (s2)
M

where we have dropped the variable t for simplicity. Equation (S2) may be rewritten in the form of the

second order polynomial equation in x = cfy /(ﬂac’,(,l) according to
A(1+ Ba)o)+x[1—A—B(1—a)0)}—x2=0, (S3)

with 0® =kog0 135, A=Ky /(,Bac’,t,,) and B =J Ry /cy - The physical solution of eqn (S3) reads as

X = {[1— A- B(l—a)o)}r {AJF B(l—a)o)—lf +4A[1+ Bw(’}}llz}/z , (S4)

which is egn (16) in the main text.

SI2. Derivation of eqn (19) in the main text, Demonstration of Q;, <0, -z, >0. Justification of the
physical interpretation of —z, .

In the cases where T'°(t) -0 and Q" (t) -0, eqn (18) becomes

r? {ch (r,t)/dt+ke [ cp (rt)—cy (r,O)]}dr =a? (—J o (D)+ ke¢3) : (S5)
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Substituting eqns (5) and (6) for ¢y (a<r<r,t) and cy(r, <r<r,t), respectively, and eqn (1) for
Jy (t) , performing the integration, we obtain
i ()] K+ G (1) | -1 e (1)/dt+ ke (1) | 202085 | ey (6)/dt+ koG (1) |+ koo =0, (S6)

where the time constant 7, is given by eqn (24) in the main text. To derive eqn (S6), we have used the

following integrals given in our previous work®

Ie
4z [ rPey (v t)dr = 4zcyy (t)[GrO]rc +(c,"{‘,| (V) gt ey (t)—1)(1+ Fa,ro/‘t—l) HE IR J , (S7)
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rO
4z [ rPey (r,t)dr = dzciy (t)[/l‘ng“ro +(Gag, — 2 I, )k (V) A ek (t)] (S8)

a

r o} 1)
with R o :fr’zﬂr’ldr, G, =Ir2ﬂrdr and HErZ =J‘r2ﬂrFryr3dr. The sum of eqns (S7)-(S8)

n il n

identifies to

I

IC rPcy (r,t)dr = —aZJ:[Qlc",\‘,, (t)+29, 87" ciy (t)} : (S9)

a

where Q= _[Gfo.rc —(1—5‘1 oy / fel,in) H:;,rc IF, . —Ha as! fe&/(azJﬁ) and

Q, =—[Ql+Ga]rc/(a2J:)J/2. The reasoning reported in our previous work (Supporting Information

therein) led to Q; <0. While this inequality is correct, the given demonstration was partially inexact.

Indeed, unlike our statement in Ref. [1], the ratio g‘lfe|/ forin satisfies 035‘1fe|/ ferin <1, which is

derived from eqn (7). After writing the term F . involved in H:;yrc as the sum F . +F ., we obtain

rlC rC
HI:;,FC =F v Grr, +'|‘r2ﬁrFr,rodr. Realizing that J‘rzﬂrFr’rodrSO, Fr.r. 20 and G . >0, it comes

fo fo

H :Z,rc / Fro,rc < Gro,rc . Combining with 0<e? for/ ferin <1, we then infer

(=& ot/ fopin )My /P, < (187 et/ fein) G, , <G, v, - Since HE . <0, it comes ©; <0.

Using the definition of Q,, the scalar Q, =—[§21+Ga’rc /(az\][j)}/Z may be written according to

Q, = —[Ga’ro +(1—g‘1 for/ felyin)Hrrg,rc IR+ H;‘Yroag‘1 feJ/(ZazJj). Let us now show that Q, <0.

I‘-0
We have H;ro =—Fy,Gayr, +J‘r2,BrFr7rodr, which is obtained after writing the term F; , involved in
a

rO
Hg“ro according to k. +F 5. Because J‘rzﬂrFrlroerO, it comes FaerGM)+H§“ro >0 or
a

Gar +Harafejn>0 where we have used 1/F, =afgj, >0. Recalling that HZ, <0 and

035‘1fe| < fopin » We thus obtain G, , +H2, ag‘lfe| >0. Since (1—5‘1fe|/fe| in)H{C IF 20, we
) 1o ilo ' o or'c

T

then conclude that Q, <0.



Substituting Q, in eqn (24), we obtain for 7,
-1
* -1 2% 2,0, p-1
7 =Ql[cM (0)- Byl (0)}—(a %) [a 4+ B2 Gy OBy (o)}. (S10)
Using Q; <0, G,, >0 and cy(0)< Bacw (0) (the steady-state surface metal concentration can not
exceed the value predicted by equilibrium Boltzmann law), we demonstrate that —z, > 0. Combining egn

rC
(24) with egn (S9), one shows that —z, satisfies the relationship —J 7, = 47;] rsz (r,0)dr/S, +¢3 , Which
a

supports the physical interpretation given in the main text for the time constant —z, .

After elimination of the quantity dcy (t)/dt+keCy (t) from the combination of egns (S6) and (13), we

obtain

¢ (t){[KM el (t)}‘1 —Ke B (O + 292)} ke
depy (t)/dt =

> , (s11)
JI0 R Ky [KM +c (t)] + B (4 +29,)

with Ry :1/(DM|out fe|a’1) the microorganism surface resistance. Introducing Ty (t) = ¢y (t)/ Ky and

using the relationships 7 =4zRsG, , /S, = ~KmBat (4 +29,) and 7¢ =7 — I Ry ! egn (S11) may

be rewritten in the concise form

2, (t){[ucﬁﬂ 0]+ kerL}+ kK g

defy (t)/dt = — , or, equivalently, (S12)
(7 —TE)[“EI?A (t)} -7
(rL—rE)—rL[lJrEﬁ,, (t)z} .
de?, (t) = ker, dt, (S13)
[ 1+5% (1) [P (e (1)) (0=t

where we have defined the second order polynomial P(x)

P(x)= (7, /r,_)+{[1+ ke (7L +ro)]/(ker|_)}x+ X2, (S14)
The discriminant A of P(x) is given by

A={[Lrke (L +70) M (ker )} — 42,7, (S15)

It is straightforward to verify that A >0 since —z, > 0. The roots T, of P(x) are



S, = {-[Lrke (7L + 7o) (et ) ]+ AV} 12 (S16)
and T = {~[1ke (L +70) (Ko ) ] -AM2} 12, (S17)
with €, >0 and T_ <0. T, can be rewritten in the form

1 ’ L2
T, = (ZkeTL) {—[l+ Ke (r,_ + 74 )]i|:1+ 2K, (z’,_ +To)+ Ke (z’,_ —z’o) J } , (S18)
which is egn (23) in the main text. Finally, the differential equation governing the time dependence of
c (1) is given by
—a ()2
(TL TE) |_|:1+C|€\i/| (t) :|
(1450 (0)][ o (1)< [T () -<_|

Equation (S19) identifies with egn (19).

dcgy (t) =ker dt . (S19)

SI3. Derivation of the expressions given in Table 1, case (Ky <<ciy (t)).
This case corresponds to a strong affinity of M for the internalisation sites, which simplifies eqgn (1) into

Jy(t)~J;. Substitution into eqn (12) provides dJy (t)/dt =—keJy (t) where Jy (t) depends on cf, (t)
and cy (t) according to eqn (8). In turn, we obtain
dep (1)t +kecia (t) = | dey (£)/dt+ ke (1) ], (S20)

which implies that the equilibrium Boltzmann law applies for the metal concentration profile in the

extracellular volume, i.e.
oy (1) = Batcia (1) (S21)
Substituting egn (S21) into eqn (S6), it comes
deyy (t)/dt +keCg () = —Kp Ba - (L4 kezo ) 71, (S22)

where we have used r,_=47rRSGa’rC/Sa=—KMﬂ;1(Ql+2§22).l Solving eqn (S22) provides the

expression of cy, (t) given in Table 1, case [B|. The surface metal concentration ¢, (t) is then simply

obtained from eqn (S21).

Sl4. Derivation of the expressions given in Table 1, case (Km >>cf(t)) and of egn (31).

Demonstration of o; =0 for ¢0 =0.



In the situation Ky, >>cf (t), we have Ty (t)<<1. Retaining the first order term in the Taylor
expansion of eqn (13) with respect to Ty (t), we obtain

dejy (t)/dt = —keCig (t) + K B3+

kT ()+(1+ By (t)/dt]. (S23)

The solution of eqn (S23) in cy, (t) is given by

t
Cip (1) = oqe et 4 KMﬁa_lk(lJr Bn'l)ﬁ,"\",, (t)— keBn'le’keth,?A (&)e*5del, (S24)
0
where o is a constant to be determined from the initial boundary condition cy; (t=0)=cy (0). In
addition, eqn (S19), or, equivalently, eqn (S12), becomes to the first order in T} (t)
a 1+ keTL a
dCM (t)/dt+ —_— CM (t):_KMkeTO/TE . (825)
TE
This differential equation admits the general solution
o5 (1) =| 6 (0)+ —eTo_ |et/m __Kefo (526)
1+ keTL 1+ keTL

where we have introduced the characteristic timescale of metal depletion 7y =z /(1+kez| ). Substituting

eqgn (S26) into egn (S24) and performing the integration, we obtain after rearrangements

-1
Ch (t)zale_ket + KM g-trzy i (0)+ KeZo 1+ BN (1+keri ) | Km_ketg . (527)
ﬁa 1+ keTL 1+ ke (TL —TE) ﬁa 1+ keTL
The constant «, is defined by the expression
Ke| 7o +Ciy (0)7
oy = KedRy —— M oo+ a0 | (28)
SaBn [1+ Ke (TL -7 )]

where we have used eqn (16) in the limit Ky, >> ciy (t), which provides

. !
¢y (0)= ,Ba[cM (0)+ ke¢3RT](1+ Bn 1) . (S29)

Equations (S26)-(S29) match the results given in Table 1, case . Under the condition where
Km >> ¢y (t), the time constant 7, may be written in the form 7, =t (0)zg —¢S(1/ij +kteRT),
which is  derived after combining egn (24), egn (S29) and the expression

g = —KMﬂ;l [Ql (1+ Bn‘l)+292} given in the Supporting Information of our previous work.' In turn,



for ¢3 =0, we have 7, =-Cy(0)zg and o, =0. This justifies the existence of the only characteristic
timescale 74 =7g/(1+kez; ) for bulk metal depletion kinetics when ¢3=0. Considering the limits
Rr —0 and Bn 1 =Ry /Rg <<1, eqn (S29) reduces to ¢, (0) = Bacm (0) . Using the latter equation and

simplifying egns (S26)-(S28) for Bnl= Ry /Rg — 0, we obtain eqn (31) in the main text.

S15. Derivation of the differential equation that determines c}, (t) for cases where 2D and 3D

adsorptions of metal ions are relevant.
In the most complex scenario where 2D and 3D adsorption processes take place, the conservation

condition for metal ions within the Kuwabara unit cell of radius r; is given by eqn (18)

2 {ch (r,t)/dt+ke[cp (rt)—cy (r,o)]}dr =

D 5

a? (=3, () + ke ~ [ ke (1) + dr® (1)t ]| - (47) [ keQY (1) + dQY (t)/ ] (530)
Using eqns (S5)-(S6), one shows that eqn (S30) is equivalent to
¢, (t)/[KM +cd (t)} —Ql[dc’,tﬂ (t)/dt +keciy (t)} - ZQZﬂa_l[dc,"{‘,l (t)/dt+keCy (t)]+ Kezo +
3o ke (1) +dr® (t)/dt |+ (4;za233)_1[keQV (t)+dQY (t)/dt|=0. (s3D)
From egn (2), we further have
drs(ydt_KMrmw[K&+cm(0]2dﬁﬂaydn (S32)

and from eqns (3) and (5), we derive

{dQ (t)/dt = G, (t)dcy (t)/dt+q* (t)dcyy (t)/dt
QY (t)=aa (t)chs (1) +a" (t)ei (1)

where we have defined G,,q", g, and q" as follows

, (S33, S34)

Iy 2
00 (1) =47 [ | o 1[5+ ua (10 [
a (S35, S36)

fo

* * 2
g (t)=4ﬂKMp¥an{a)r/[KM +cM(r,t)] }rzdr

a

and



Ga (t) = 470pax ti? {a)? /[KM +Cy (r,t)}}rzdr
) , (S37, S38)

fo

q (t)= 4ﬁpr\n/axj{wf/[KM +Cp (f,t)}}rzdr

a

with o and ; two functions of the radial coordinate r given by

= fefat (14 lea,r) (S39)
and ==BA Far, (S40)
respectively, with /1=—(,9F,r0,,rC +Fa‘r0)=—ga_1/ fe;. Substituting eqns (S32)-(S34) in egn (S31) and

eliminating the quantity dcy, (t)/dt+kecf(,| (t) with use of eqn (13), we obtain after arrangements the

following differential equation

acfy (t)/at [ 1+ (t)ffL_(rL_fE)MSLl:;_“:A } q*/}aan L (g e a1 )10 TR 0 )ﬂ '
S (V)] 1+5% (1) [{2+| 1+ (t)}kerL+kerSLl+;Cl\'A&((tt)J e M(qa + B30 )| 1+ % (t)]}+
Koo | 1+ Ci (t)]2 ke q; ‘Jq |1+ (t)]2 e (t)=0 (S41)

a~u

where we have introduced 6= KM/KM and TS_HF,SnaX/J —kthH/KH- In the limit where 2D

adsorption is most predominant, it comes G, =G =g, =q" =0, and egn (S41) then reduces to eqn (35) in

the main text.

S16. Derivation of eqn (36)-(40) in the main text.

In the situations where the inequalities Ky, Ky <<ciy (t) and Ky <<cy(r,t) all apply, we have
cu (t) = Bk (t) from eqn (12) (see eqns (S20)-(S21)) and eqn (S31) further simplifies into
dei (£)/dt + koS (1) = —Kpu B {1+ ke[ 7o + (T +Veoromax /Sa)/J:}}/rL . (542)

The solution of this equation is identical to that of eqn (S22) provided that 7, is replaced by the timescale

7, defined by

To=T7p+ (F%ax +\/soft,‘3n\<ax /Sa)/‘]: ; (S43)



which is egn (36) in the main text.

In the other extremes where Ky, K§y >> ¢, (t) and KN >> Cy (r,t), eqns (1), (2) and (3) may be
linearized with respect to c¥y(t)/Ky, c(t)/Ky and cy(rt)/Ky. After elimination of

dey (t)/dt+kecyy (t) with use of egqn (13) and substitution in egn (S31), the differential equation

governing the time dependence of the metal surface concentration now reads as

dciy (t)/dt+(1+f£]cﬁﬂ (t)=—Kmkero / 7¢ , (S44)
E

where 7 and 7, are defined by egns (37)-(40) in the main text. The solution cfy (t) of eqn (S44) is
similar to that of eqn (S25) with replacing 7z and zg by 7, and 7g, respectively. The quantity x,

expressed by egn (39) and involved in the definition of 7 necessarily satisfies x, >1 because Q, <0,

Gar 20 and G, +HZ as 'fy >0, as shown in §SI2. In addition, the inequalities H3, <0 and

Q; <0 (8SI12) lead to x* >1.

7. Figures S1 and S2.
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Figure S1. Characteristic dependence of the normalized fluxes JU/JS (black), Jo/J3g° (red), JM/J,?,,
(blue) on the dimensionless time t/z, for various values of k, (30 = Ju(t=0),3 =3 (t>©)). (A)
Ky =107"mM, (B) Ky =10°mM, (C) Ky =10°mM and (D) Ky, =10~*mM. The letters (a), (b), (c),

(d) and (e) in panels (A), (B), (C) and (D) correspond to the values of k,z, in decreasing order as adopted in

Figure 2A,B,C and D, respectively. The other model parameters are identical to those adopted in Figure 2 of
the main text.
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Figure S2. (A) Dependence of the characteristic depletion timescale z, on the dimensionless charge density
po/(ZZFc‘”) in the soft surface layer for various values of 1/k, (indicated). Model parameters :

KM=10‘5mM, and p,/F=+30mM. Other parameters: a=400 nm, d=50 nm, (p=10_6,
KintKp =2x107°ms?, Do =107°m%™, e=1, #0=0, cj(t=0)=10"mM, z=1, z=2,

anax = pn\ﬂax =0 (metal adsorption on the biomembrane and in the soft surface layer is ignored in eqn (18)),
I=¢/e =1, y,=06,=0 (the membrane surface is uncharged). (B) Dependence of the ratios

cym (t—o0)/cy (t=0) (plain lines) and J°/J;; (dotted lines) under the conditions of panel (A).
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