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1 Vibrational-exciton model for three coupled anharmonic oscillators
Here we describe the formalism to calculate the eigenstates of three coupled anharmonic oscillators, and the elements
of the transition-dipole moment matrix. The basis set chosen to describe the system is that formed by the eigenstates of
non-interacting harmonic oscillators |l,m, n〉, where the oscillators have l, m and n vibrational quanta, respectively.
These uncoupled oscillators are used as local modes of a system of coupled oscillators. Taking the weak pump
approximation implies that a maximum of two vibrational quanta are available, and the basis set is

{|0 0 0〉, |1 0 0〉, |0 1 0〉, |0 0 1〉, |2 0 0〉, |0 2 0〉, |0 0 2〉, |1 1 0〉, |1 0 1〉, |0 1 1〉}. (1)

Taking a dipole approximation for the potential, the hamiltonian for the zero-, one- and two-exciton manifold can be
calculated.1 The zero-exciton manifold is H(0) = (0). The one-exciton manifold in the local basis set is given by

H(1) =

 ε1 β12 β13

β12 ε2 β23

β13 β23 ε3

 , (2)

where εi are the local-mode energies, and βij are the couplings between them. The two-exciton manifold is given by

H(2) =



2ε1 −∆1 0 0
√

2β12

√
2β13 0

0 2ε2 −∆2 0
√

2β12 0
√

2β23

0 0 2ε3 −∆3 0
√

2β13

√
2β23√

2β12

√
2β12 0 ε1 + ε2 β23 β13√

2β13 0
√

2β13 β23 ε1 + ε3 β12

0
√

2β23

√
2β23 β13 β12 ε2 + ε3

 . (3)
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Note that the anharmonicities ∆i were introduced phenomenologically. Also note that the matrix elements of the
Hamiltoninan in which two excitons are changed are zero, e.g. 〈2 0 0|H|0 1 1〉 = 0, and that β23 = 〈1 0 1|H|1 1 0〉 =

〈0 0 1|H|0 1 0〉. After diagonalizing this hamiltonian, states {|Ω(0)
0 〉, |Ω

(1)
j 〉, |Ω

(2)
k 〉} will be obtained, with 1 ≤ j ≤ 3

and 4 ≤ k ≤ 9. The transition-dipole moment matrix, written in the local-mode basis set is,

µ̂ =



µ1 µ2 µ3

µ1

√
2 µ1 0 0 µ2 µ3 0

µ2 0
√

2 µ2 0 µ1 0 µ3

µ3 0 0
√

2 µ3 0 µ1 µ2√
2 µ1 0 0

0
√

2µ2 0

0 0
√

2µ3

µ2 µ1 0
µ3 0 µ1

0 µ3 µ2


. (4)

This operator needs to be written in the exciton basis set formed by the {|Ω(n)
i 〉} states, which is done via a similarity

transformation. The elements µnm and the Ω
(n)
i energies are used to calculate the linear response, which is given by

αε1,ε2(ω) =
∑
j

|µ0j |2γj
(ω − Ω

(1)
j )2 + γ2

j

, (5)

with 1 ≤ j ≤ 3 and where the Ω
(1)
j depend parametrically on ε1 and ε2, and γj are the homogeneous linewidths of the

transitions. The 2D-IR response is given by

∆αε1,ε2(ωpump, ωprobe) =

−
∑
i

γ2
i (1 + γi/Γ)

[
p2|µ0i|2|µ0i|2 + p1|µ0i|2|µ0i|2

][
(ωpump − Ω

(1)
i )2 + (γi + Γ)2

] [
(ωprobe − Ω

(1)
i )2 + γ2

i

]
−

∑
i,j

γiγj(1 + γj/Γ)
[
p2|µ0i|2|µ0j |2 + p1(µ0i · µ0j)

2
][

(ωpump − Ω
(1)
i )2 + (γj + Γ)2

] [
(ωprobe − Ω

(1)
j )2 + γ2

i

] (6)

+
∑
i,k

γiγk(1 + γi/Γ)
[
p2|µik|2|µ0i|2 + p1(µik · µ0i)

2
][

(ωpump − Ω
(1)
i )2 + (γi + Γ)2

] [
(ωprobe − (Ω

(2)
k − Ω

(1)
i ))2 + γ∗2k

] ,
with 1 ≤ i, j ≤ 3 and 4 ≤ k ≤ 9. The first term in this equation is the contribution to the pump-probe signal due to
ground-state bleaching, the second term is the stimulated emission and the third term is the excited-state absorption.
γ∗i are the homogeneous linewidth of the |Ω(1)

j 〉 → |Ω
(2)
k 〉 transitions. Γ is the half-width at half-maximum of the

pump spectrum. The values for p1 and p2 determine the polarization between pump and probe pulses of the 2D-IR
signal, and they arise from the the two possible polarizations between the pump and probe fields.2 To calculate ∆α‖,
the parallel-polarization signal, p1 = 2, p2 = −1, and ∆α⊥, the perpendicular-polarization signal, p1 = 1, p2 = 2.
The fact that we measure on an ensemble of molecules in different solvent surroundings is taken into account in the
model. Following the central limit theorem3, the local-state frequencies ε1 and ε2 are considered to have Gaussian
probability distributions around central values ε̄i, such that the linear absorption becomes

αε̄1,ε̄2,ε̄3(ω) =

∫∫∫
dε1dε2dε3e

(ε1−ε̄1)2/σ2
1e(ε2−ε̄2)2/σ2

2e(ε3−ε̄3)2/σ2
3 αε1,ε2,ε3(ω), (7)

where σi are the inhomogeneous line widths of the transitions, and the integrals are performed over the range
(
εi − 3

2σi,

εi + 3
2σi
)
. The expression to obtain the 2D-IR response is analogous to that in equation 7.
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We use the vibrational-exciton model to calculate the 2D-IR response of three oscillators that are involved in a salt
bridge between Gdm+ and Ac−. The Gdm+ modes arise from CN3D+

6 vibrations, and the Ac− mode from a COO−

antisymmetric stretch vibration. These modes are essentially different and thus we use different values for the inten-
sity of their transition dipole moments |µi|, their anharmonicities ∆i, and homogeneous linewidths γi and γ∗i . We
also take different values for their inhomogeneous linewidths σi. The two CN3D+

6 modes show an anticorrelation
behaviour, which can be detected through the elongation of the cross peaks that occurs along the antidiagonal line of
the 2D plot.4,5 To account for this anticorrelation we include in the model a Gaussian distribution for the value of the
coupling βij between the two CN3D+

6 modes, which has a width σβ that is a parameter of the fit.

2 Fit parameters

The fitting routine uses the Levenberg-Marquardt Method to minimize χ2 =
N∑
i=1

[
yexpi −ycalci

σi

]2
, where yexp

i are the

measured points that have standard deviations σi, and ycalc
i are the calculated values (which depend on the fitting

parameters). The fits are performed simultaneously on the parallel and perpendicular 2D-IR measurements, using an
independent overall scaling factor for each. The width of the pump spectrum is Γ = 3.3 cm−1, which was determined
experimentally and was a fixed parameter of the fits. The 2D-IR signal is a function of the angles θij between the
transition dipole moments through the dot products of equation 7. The definition of these angles is shown in Figure S1.
Note that, using these definitions, {θ12, θ13, θ23} are not orthogonal coordinates for the orientation of the µi, i.e. θ23

cannot be changed without changing θ12 and θ13. The angle η3 (see Figure S1) is an independent coordinate, and
{θ12, θ13, η3} were free parameters of the fit. θ23 was calculated afterwards via

θ23 = cos−1 [sin θ12 sin θ13 cos η3 + cos θ12 cos θ13] . (8)

The parameters obtained from the fit are shown in Table S1. A rule of thumb for a good fit is that the reduced chi

Table S1: Fit parameters for the Gdm+· · ·Ac− dimer. For each oscillator the parameters are: local-mode absorption
frequency ε; anharmonicity ∆; homogeneous dephasing for the |0〉 → |1〉 transition γ01, and for the |1〉 → |2〉
transition γ12; inhomogeneous width σ; coupling between transition dipole moments β; width of the distribution of
couplings σβ ; angle between transition dipole moments θ. All parameters are given in cm−1 and the angle in degrees.
χ2
r is 41.

Gdm+
HF Gdm+

LF Ac−

ε 1602 ε 1586 ε 1560
∆ 4 ∆ 8 ∆ 14
γ01 6 γ01 5 γ01 7
γ12 7 γ12 6 γ12 5
σ 13 σ 22 σ 15
η3 55

Gdm+
HF-Gdm+

LF Gdm+
HF-Ac− Gdm+

LF-Ac−

θ23 105 ± 25 ◦ θ13 180◦ ± 15 θ12 75◦ ± 10
β23 -8 ± 2 β13 -11 ± 3 β12 8 ± 3
σβ 12

square χ2
r = χ2

N−M should have a value∼1 (N is the number of observation points andM the number of parameters).6

However, the model we use is not linear in the parameters and we make several simplifications, so it is to be expected
that χ2

r > 1. Nonetheless, we find that the fits reproduce the measurements very well, despite the χ2
r being significantly
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larger than 1. The outcome of a χ2-minimization routine is the covariance matrix, which is related to the confidence
limits of the fitted parameters, but the values of χ2

r that we obtained are too large to follow this procedure (the resulting
uncertainties are unrealistically small). Therefore, to obtain an estimate for the confidence limits in the values of
βij and θij we changed the parameter until the value for χ2

r was at least 50% larger. These confidence limits are
listed in Table S1. The result of our fit shows that µ1 and µ3 are approximately antiparallel, and from equation 8,
θ23 ≈ 180 − θ12, which is valid for all values of η3. Therefore, for this geometry of transition dipole moments
changing η3 does not result in a significant increase of χ2

r . We estimated confidence limits for θ23 using equation 8
with the confidence limits of θ12 and θ13, and the full range of possible values of η3.

Figure S1: Definition
of the angles between
the transition-dipole mo-
ments θij in the reference
frame used for the fit.

3 Ab-initio calculations

It has been shown before that Gdm+ has a degenerate mode at∼1600 cm−1 due to the CN3 and NH2 scissors motion.7

In Figure S2 we show the frequencies and intensities for the vibrational modes involved in the Gdm+· · ·Ac−salt
bridge, obtained from a calculation using Gaussian038 at the MP2/6-311+G(d) level of theory (the optimized geometry
is shown in Figure 1A of the manuscript). The lowest frequency mode in the spectrum of Figure S2 corresponds mainly
to the COO− antisymmetric stretch vibration of Ac−, and the other two modes arise mainly from CN3D6 vibrations
of Gdm+. There is a high degree of mixing between the COO− mode and both of the CN3D6 modes. The observed
frequency splitting between these two modes upon salt bridge formation is in agreement with our measurements in
DMSO, shown in Figure 1B of the manuscript.

Figure S2: Frequencies
and relative intensities of
the vibrational modes of
Gdm+ and Ac− obtained
from the MP2 calcu-
lation of the structure
shown in Figure 1 in the
manuscript.
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4 Sample Preparation

Guanidine·Ac (>98% purity), guanidine·HCl (>98% purity), methylguanidine·HCl (>98% purity), and tetrabutylam-
monium acetate (>97% purity) were purchased from Sigma-Aldrich and used without further purification. Hydrogen-
deuterium exchange of the carboxyl and guanidinium groups groups of these molecules was achieved by evaporating
the compounds from excess D2O. Measurements were performed using a 400 mM concentration solution in dimethyl-
sulfoxide (DMSO) of all compounds, at room temperature (23◦C). These conditions allow more than 90% dimer
formation.9 Droplets of the solutions are placed between CaF2 windows (2 mm thick), separated by a Teflon spacer of
10µm for the 2D-IR measurements and 25µm for the FTIR measurements.

5 Additional Data

We use a thin piece of InAs to to measure a pump-probe cross-correlation to determine the intensity envelope of
the pump pulses, which is approximately a single-sided exponential with a FWHM of 800 fs. In Figure S3 we
show the pump-probe cross-correlation and the resulting dynamics of a representative diagonal and cross peak. Our
measurements are done at 1.5 ps delay, at which the pump pulse intensity has almost vanished.

Figure S3: Cross corre-
lation of the pump and
probe pulses (gray), de-
termined by 2-photon ab-
sorption in InAs; intensity
of the induced absorption-
diagonal band for when
νpump = νArgHF (yel-
low); Intensity of the in-
duced absorption of the
ArgLF cross peak (blue).

The frequency splitting between the two CN3H6 modes of Gdm+, which are centered at∼1660 cm−1 in DMSO, is
not detectable in the linear spectrum. However, a significant frequency splitting between the Gdm+ modes is detected
upon salt bridge formation with Ac−, as seen in Figure S4.

Figure S4: FTIR spectra
of the non-deuterated
Gdm+· · ·Ac− dimer,
Gdm+ and Ac−

in DMSO (solvent
subtracted).
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