Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © The Royal Society of Chemistry 2014

Supplementary information Salt-Bridge Structure in Solution Revealed by 2D-IR Spectroscopy

Adriana Huerta-Viga, Sérgio R. Domingos, Saeed Amirjalayer and Sander Woutersen*

Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, Amsterdam, The Netherlands

Contents

1	Vibrational-exciton model for three coupled anharmonic oscillators	1
2	Fit parameters	3
3	Ab-initio calculations	4
4	Sample Preparation	5
5	Additional Data	5

1 Vibrational-exciton model for three coupled anharmonic oscillators

Here we describe the formalism to calculate the eigenstates of three coupled anharmonic oscillators, and the elements of the transition-dipole moment matrix. The basis set chosen to describe the system is that formed by the eigenstates of non-interacting harmonic oscillators $|l, m, n\rangle$, where the oscillators have l, m and n vibrational quanta, respectively. These uncoupled oscillators are used as local modes of a system of coupled oscillators. Taking the weak pump approximation implies that a maximum of two vibrational quanta are available, and the basis set is

$$\{|000\rangle, |100\rangle, |010\rangle, |001\rangle, |200\rangle, |020\rangle, |002\rangle, |110\rangle, |101\rangle, |011\rangle\}.$$
(1)

Taking a dipole approximation for the potential, the hamiltonian for the zero-, one- and two-exciton manifold can be calculated.¹ The zero-exciton manifold is $H^{(0)} = (0)$. The one-exciton manifold in the local basis set is given by

$$H^{(1)} = \begin{pmatrix} \epsilon_1 & \beta_{12} & \beta_{13} \\ \beta_{12} & \epsilon_2 & \beta_{23} \\ \beta_{13} & \beta_{23} & \epsilon_3 \end{pmatrix},$$
 (2)

where ϵ_i are the local-mode energies, and β_{ij} are the couplings between them. The two-exciton manifold is given by

$$H^{(2)} = \begin{pmatrix} 2\epsilon_1 - \Delta_1 & 0 & 0 & \sqrt{2}\beta_{12} & \sqrt{2}\beta_{13} & 0 \\ 0 & 2\epsilon_2 - \Delta_2 & 0 & \sqrt{2}\beta_{12} & 0 & \sqrt{2}\beta_{23} \\ 0 & 0 & 2\epsilon_3 - \Delta_3 & 0 & \sqrt{2}\beta_{13} & \sqrt{2}\beta_{23} \\ \sqrt{2}\beta_{12} & \sqrt{2}\beta_{12} & 0 & \epsilon_1 + \epsilon_2 & \beta_{23} & \beta_{13} \\ \sqrt{2}\beta_{13} & 0 & \sqrt{2}\beta_{13} & \beta_{23} & \epsilon_1 + \epsilon_3 & \beta_{12} \\ 0 & \sqrt{2}\beta_{23} & \sqrt{2}\beta_{23} & \beta_{13} & \beta_{12} & \epsilon_2 + \epsilon_3 \end{pmatrix}.$$
(3)

Note that the anharmonicities Δ_i were introduced phenomenologically. Also note that the matrix elements of the Hamiltonian in which two excitons are changed are zero, e.g. $\langle 200|H|011\rangle = 0$, and that $\beta_{23} = \langle 101|H|110\rangle = \langle 001|H|010\rangle$. After diagonalizing this hamiltonian, states $\{|\Omega_0^{(0)}\rangle, |\Omega_j^{(1)}\rangle, |\Omega_k^{(2)}\rangle\}$ will be obtained, with $1 \le j \le 3$ and $4 \le k \le 9$. The transition-dipole moment matrix, written in the local-mode basis set is,

This operator needs to be written in the exciton basis set formed by the $\{|\Omega_i^{(n)}\rangle\}$ states, which is done via a similarity transformation. The elements μ_{nm} and the $\Omega_i^{(n)}$ energies are used to calculate the linear response, which is given by

$$\alpha_{\epsilon_1,\epsilon_2}(\omega) = \sum_j \frac{|\boldsymbol{\mu}_{0j}|^2 \gamma_j}{(\omega - \Omega_j^{(1)})^2 + \gamma_j^2},\tag{5}$$

with $1 \le j \le 3$ and where the $\Omega_j^{(1)}$ depend parametrically on ϵ_1 and ϵ_2 , and γ_j are the homogeneous linewidths of the transitions. The 2D-IR response is given by

$$\Delta \alpha_{\epsilon_{1},\epsilon_{2}}(\omega_{\text{pump}},\omega_{\text{probe}}) = - \sum_{i} \frac{\gamma_{i}^{2}(1+\gamma_{i}/\Gamma) \left[p_{2}|\boldsymbol{\mu}_{0i}|^{2}+p_{1}|\boldsymbol{\mu}_{0i}|^{2}|\boldsymbol{\mu}_{0i}|^{2}\right]}{\left[(\omega_{\text{pump}}-\Omega_{i}^{(1)})^{2}+(\gamma_{i}+\Gamma)^{2}\right] \left[(\omega_{\text{probe}}-\Omega_{i}^{(1)})^{2}+\gamma_{i}^{2}\right]} - \sum_{i,j} \frac{\gamma_{i}\gamma_{j}(1+\gamma_{j}/\Gamma) \left[p_{2}|\boldsymbol{\mu}_{0i}|^{2}|\boldsymbol{\mu}_{0j}|^{2}+p_{1}(\boldsymbol{\mu}_{0i}\cdot\boldsymbol{\mu}_{0j})^{2}\right]}{\left[(\omega_{\text{pump}}-\Omega_{i}^{(1)})^{2}+(\gamma_{j}+\Gamma)^{2}\right] \left[(\omega_{\text{probe}}-\Omega_{j}^{(1)})^{2}+\gamma_{i}^{2}\right]} + \sum_{i,k} \frac{\gamma_{i}\gamma_{k}(1+\gamma_{i}/\Gamma) \left[p_{2}|\boldsymbol{\mu}_{ik}|^{2}|\boldsymbol{\mu}_{0i}|^{2}+p_{1}(\boldsymbol{\mu}_{ik}\cdot\boldsymbol{\mu}_{0i})^{2}\right]}{\left[(\omega_{\text{probe}}-\Omega_{i}^{(1)})^{2}+(\gamma_{i}+\Gamma)^{2}\right] \left[(\omega_{\text{probe}}-(\Omega_{k}^{(2)}-\Omega_{i}^{(1)}))^{2}+\gamma_{k}^{*2}\right]},$$
(6)

with $1 \le i, j \le 3$ and $4 \le k \le 9$. The first term in this equation is the contribution to the pump-probe signal due to ground-state bleaching, the second term is the stimulated emission and the third term is the excited-state absorption. γ_i^* are the homogeneous linewidth of the $|\Omega_j^{(1)}\rangle \rightarrow |\Omega_k^{(2)}\rangle$ transitions. Γ is the half-width at half-maximum of the pump spectrum. The values for p_1 and p_2 determine the polarization between pump and probe pulses of the 2D-IR signal, and they arise from the the two possible polarizations between the pump and probe fields.² To calculate $\Delta \alpha_{\parallel}$, the parallel-polarization signal, $p_1 = 2$, $p_2 = -1$, and $\Delta \alpha_{\perp}$, the perpendicular-polarization signal, $p_1 = 1$, $p_2 = 2$. The fact that we measure on an ensemble of molecules in different solvent surroundings is taken into account in the model. Following the central limit theorem³, the local-state frequencies ϵ_1 and ϵ_2 are considered to have Gaussian probability distributions around central values $\bar{\epsilon}_i$, such that the linear absorption becomes

$$\alpha_{\bar{\epsilon}_1,\bar{\epsilon}_2,\bar{\epsilon}_3}(\omega) = \iiint d\epsilon_1 d\epsilon_2 d\epsilon_3 e^{(\epsilon_1 - \bar{\epsilon}_1)^2 / \sigma_1^2} e^{(\epsilon_2 - \bar{\epsilon}_2)^2 / \sigma_2^2} e^{(\epsilon_3 - \bar{\epsilon}_3)^2 / \sigma_3^2} \alpha_{\epsilon_1,\epsilon_2,\epsilon_3}(\omega), \tag{7}$$

where σ_i are the inhomogeneous line widths of the transitions, and the integrals are performed over the range $(\epsilon_i - \frac{3}{2}\sigma_i)$, $\epsilon_i + \frac{3}{2}\sigma_i)$. The expression to obtain the 2D-IR response is analogous to that in equation 7.

We use the vibrational-exciton model to calculate the 2D-IR response of three oscillators that are involved in a salt bridge between Gdm⁺ and Ac⁻. The Gdm⁺ modes arise from $CN_3D_6^+$ vibrations, and the Ac⁻ mode from a COO⁻ antisymmetric stretch vibration. These modes are essentially different and thus we use different values for the intensity of their transition dipole moments $|\mu_i|$, their anharmonicities Δ_i , and homogeneous linewidths γ_i and γ_i^* . We also take different values for their inhomogeneous linewidths σ_i . The two $CN_3D_6^+$ modes show an anticorrelation behaviour, which can be detected through the elongation of the cross peaks that occurs along the antidiagonal line of the 2D plot.^{4,5} To account for this anticorrelation we include in the model a Gaussian distribution for the value of the coupling β_{ij} between the two $CN_3D_6^+$ modes, which has a width σ_β that is a parameter of the fit.

2 Fit parameters

The fitting routine uses the Levenberg-Marquardt Method to minimize $\chi^2 = \sum_{i=1}^{N} \left[\frac{y_i^{\text{exp}} - y_i^{\text{calc}}}{\sigma_i} \right]^2$, where y_i^{exp} are the

measured points that have standard deviations σ_i , and y_i^{calc} are the calculated values (which depend on the fitting parameters). The fits are performed simultaneously on the parallel and perpendicular 2D-IR measurements, using an independent overall scaling factor for each. The width of the pump spectrum is $\Gamma = 3.3 \text{ cm}^{-1}$, which was determined experimentally and was a fixed parameter of the fits. The 2D-IR signal is a function of the angles θ_{ij} between the transition dipole moments through the dot products of equation 7. The definition of these angles is shown in Figure S1. Note that, using these definitions, $\{\theta_{12}, \theta_{13}, \theta_{23}\}$ are not orthogonal coordinates for the orientation of the μ_i , i.e. θ_{23} cannot be changed without changing θ_{12} and θ_{13} . The angle η_3 (see Figure S1) is an independent coordinate, and $\{\theta_{12}, \theta_{13}, \eta_3\}$ were free parameters of the fit. θ_{23} was calculated afterwards via

$$\theta_{23} = \cos^{-1} \left[\sin \theta_{12} \sin \theta_{13} \cos \eta_3 + \cos \theta_{12} \cos \theta_{13} \right].$$
(8)

The parameters obtained from the fit are shown in Table S1. A rule of thumb for a good fit is that the reduced chi

Table S1: Fit parameters for the Gdm⁺···Ac⁻ dimer. For each oscillator the parameters are: local-mode absorption frequency ϵ ; anharmonicity Δ ; homogeneous dephasing for the $|0\rangle \rightarrow |1\rangle$ transition γ_{01} , and for the $|1\rangle \rightarrow |2\rangle$ transition γ_{12} ; inhomogeneous width σ ; coupling between transition dipole moments β ; width of the distribution of couplings σ_{β} ; angle between transition dipole moments θ . All parameters are given in cm⁻¹ and the angle in degrees. χ_r^2 is 41.

$\mathrm{Gdm}^+_{\mathrm{HF}}$			$\mathrm{Gdm}^+_{\mathrm{LF}}$			Ac^{-}		
	ϵ	1602		ϵ	1586		ϵ	1560
	Δ	4		Δ	8		Δ	14
	γ_{01}	6		γ_{01}	5		γ_{01}	7
	γ_{12}	7		γ_{12}	6		γ_{12}	5
	σ	13		σ	22		σ	15
	η_3	55						
$\mathrm{Gdm}^+_{\mathrm{HF}} ext{-}\mathrm{Gdm}^+_{\mathrm{LF}}$			$\mathrm{Gdm}^+_{\mathrm{HF}}\text{-}\mathrm{Ac}^-$			$\mathrm{Gdm}^+_{\mathrm{LF}}\mathrm{-Ac}^-$		
	θ_{23}	$105\pm25~^\circ$		θ_{13}	$180^\circ\pm15$		θ_{12}	$75^\circ\pm10$
	β_{23}	-8 ± 2		β_{13}	-11 ± 3		β_{12}	8 ± 3
	σ_{eta}	12						

square $\chi_r^2 = \frac{\chi^2}{N-M}$ should have a value ~1 (N is the number of observation points and M the number of parameters).⁶ However, the model we use is not linear in the parameters and we make several simplifications, so it is to be expected that $\chi_r^2 > 1$. Nonetheless, we find that the fits reproduce the measurements very well, despite the χ_r^2 being significantly

larger than 1. The outcome of a χ^2 -minimization routine is the covariance matrix, which is related to the confidence limits of the fitted parameters, but the values of χ^2_r that we obtained are too large to follow this procedure (the resulting uncertainties are unrealistically small). Therefore, to obtain an estimate for the confidence limits in the values of β_{ij} and θ_{ij} we changed the parameter until the value for χ^2_r was at least 50% larger. These confidence limits are listed in Table S1. The result of our fit shows that μ_1 and μ_3 are approximately antiparallel, and from equation 8, $\theta_{23} \approx 180 - \theta_{12}$, which is valid for all values of η_3 . Therefore, for this geometry of transition dipole moments changing η_3 does not result in a significant increase of χ^2_r . We estimated confidence limits for θ_{23} using equation 8 with the confidence limits of θ_{12} and θ_{13} , and the full range of possible values of η_3 .

3 Ab-initio calculations

It has been shown before that Gdm⁺ has a degenerate mode at ~1600 cm⁻¹ due to the CN₃ and NH₂ scissors motion.⁷ In Figure S2 we show the frequencies and intensities for the vibrational modes involved in the Gdm⁺···Ac⁻salt bridge, obtained from a calculation using Gaussian03⁸ at the MP2/6-311+G(d) level of theory (the optimized geometry is shown in Figure 1A of the manuscript). The lowest frequency mode in the spectrum of Figure S2 corresponds mainly to the COO⁻ antisymmetric stretch vibration of Ac⁻, and the other two modes arise mainly from CN₃D₆ vibrations of Gdm⁺. There is a high degree of mixing between the COO⁻ mode and both of the CN₃D₆ modes. The observed frequency splitting between these two modes upon salt bridge formation is in agreement with our measurements in DMSO, shown in Figure 1B of the manuscript.

Figure S2: Frequencies and relative intensities of the vibrational modes of Gdm^+ and Ac^- obtained from the MP2 calculation of the structure shown in Figure 1 in the manuscript.

4 Sample Preparation

Guanidine·Ac (>98% purity), guanidine·HCl (>98% purity), methylguanidine·HCl (>98% purity), and tetrabutylammonium acetate (>97% purity) were purchased from Sigma-Aldrich and used without further purification. Hydrogendeuterium exchange of the carboxyl and guanidinium groups groups of these molecules was achieved by evaporating the compounds from excess D₂O. Measurements were performed using a 400 mM concentration solution in dimethylsulfoxide (DMSO) of all compounds, at room temperature (23°C). These conditions allow more than 90% dimer formation.⁹ Droplets of the solutions are placed between CaF₂ windows (2 mm thick), separated by a Teflon spacer of 10 μ m for the 2D-IR measurements and 25 μ m for the FTIR measurements.

5 Additional Data

We use a thin piece of InAs to to measure a pump-probe cross-correlation to determine the intensity envelope of the pump pulses, which is approximately a single-sided exponential with a FWHM of 800 fs. In Figure S3 we show the pump-probe cross-correlation and the resulting dynamics of a representative diagonal and cross peak. Our measurements are done at 1.5 ps delay, at which the pump pulse intensity has almost vanished.

The frequency splitting between the two CN_3H_6 modes of Gdm⁺, which are centered at ~1660 cm⁻¹ in DMSO, is not detectable in the linear spectrum. However, a significant frequency splitting between the Gdm⁺ modes is detected upon salt bridge formation with Ac⁻, as seen in Figure S4.

References

- [1] P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, Cambridge University Press, 1st edn, 2011.
- [2] S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford University Press, 1995.
- [3] R. Kubo and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Springer, Berlin, 1985.
- [4] N. Demirdöven, M. Khalil, O. Golonzka and A. Tokmakoff, J. Phys. Chem. A, 2001, 105, 8025-8030.
- [5] A. Ishizaki and Y. Tanimura, J. Phys. Chem. A, 2007, 111, 9269-76.
- [6] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, *Numerical Recipes in C: The art of Scientific Computing*, Chapter 15, Cambridge University Press, 2nd edn.
- [7] A. L. Magalhaes and J. A. N. F. Gomes, Int. J. Quantum Chem., 1997, 61, 725–739.
- [8] M. J. Frisch and et al, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
- [9] B. Linton and A. D. Hamilton, Tetrahedron, 1999, 55, 6027-6038.